knitr::clean_cache()
## Clean these cache files?
##
## models_cache/html//m3a_98d1253205c5e386b69195837c70ea4c.RData
## models_cache/html//m3a_98d1253205c5e386b69195837c70ea4c.rdb
## models_cache/html//m3a_98d1253205c5e386b69195837c70ea4c.rdx
## models_cache/html//m3b_14609c68e81a3034a5a3a396eb054751.RData
## models_cache/html//m3b_14609c68e81a3034a5a3a396eb054751.rdb
## models_cache/html//m3b_14609c68e81a3034a5a3a396eb054751.rdx
## models_cache/html//m3b-rev_c29f1da8e5d05ca8b3aea3de95e978de.RData
## models_cache/html//m3b-rev_c29f1da8e5d05ca8b3aea3de95e978de.rdb
## models_cache/html//m3b-rev_c29f1da8e5d05ca8b3aea3de95e978de.rdx
## models_cache/html//m3c_bb144c33b2b9d7ba7584462b3714bb76.RData
## models_cache/html//m3c_bb144c33b2b9d7ba7584462b3714bb76.rdb
## models_cache/html//m3c_bb144c33b2b9d7ba7584462b3714bb76.rdx
## models_cache/html//m3c-rev_f1ed77d5103f379daef3de6fcca642c1.RData
## models_cache/html//m3c-rev_f1ed77d5103f379daef3de6fcca642c1.rdb
## models_cache/html//m3c-rev_f1ed77d5103f379daef3de6fcca642c1.rdx
## models_cache/html//m3d_0b55b35c9e3e12e64c88a89210c289e8.RData
## models_cache/html//m3d_0b55b35c9e3e12e64c88a89210c289e8.rdb
## models_cache/html//m3d_0b55b35c9e3e12e64c88a89210c289e8.rdx
## models_cache/html//m3d-rev_3882365094ab8d80856cd9f653840291.RData
## models_cache/html//m3d-rev_3882365094ab8d80856cd9f653840291.rdb
## models_cache/html//m3d-rev_3882365094ab8d80856cd9f653840291.rdx
## models_cache/html//m3e_985ed9aeea6e959e117ea37419c0c8c4.RData
## models_cache/html//m3e_985ed9aeea6e959e117ea37419c0c8c4.rdb
## models_cache/html//m3e_985ed9aeea6e959e117ea37419c0c8c4.rdx
## models_cache/html//m4b_4aefe8cbf5a519bc188cc72d2cb3e239.RData
## models_cache/html//m4b_4aefe8cbf5a519bc188cc72d2cb3e239.rdb
## models_cache/html//m4b_4aefe8cbf5a519bc188cc72d2cb3e239.rdx
## models_cache/html//unnamed-chunk-1_9f1f6565f0969ac1ff7a9539b9a59476.RData
## models_cache/html//unnamed-chunk-1_9f1f6565f0969ac1ff7a9539b9a59476.rdb
## models_cache/html//unnamed-chunk-1_9f1f6565f0969ac1ff7a9539b9a59476.rdx
# data <- params$data
targets::tar_load(esm_long)
data <- esm_long
library(brms)
## Loading required package: Rcpp
## Loading 'brms' package (version 2.14.4). Useful instructions
## can be found by typing help('brms'). A more detailed introduction
## to the package is available through vignette('brms_overview').
##
## Attaching package: 'brms'
## The following object is masked from 'package:stats':
##
## ar
library(bayesplot)
## This is bayesplot version 1.8.0
## - Online documentation and vignettes at mc-stan.org/bayesplot
## - bayesplot theme set to bayesplot::theme_default()
## * Does _not_ affect other ggplot2 plots
## * See ?bayesplot_theme_set for details on theme setting
data$int_val_change <- data$int_val_post - data$int_val_pre
bf_1 <- bf(frustrated ~ 1 +
course +
(1|s|number) +
(1|p|assign))
bf_2 <- bf(confident ~ 1 +
course +
(1|s|number) +
(1|p|assign))
bf_3 <- bf(interested ~ 1 +
course +
(1|s|number) +
(1|p|assign))
bf_int <- bf(int_val_change ~ course)
m3a <- brm(bf_1 + bf_2 + bf_3 +
bf_int,
data = data,
chains = 4, cores = 4, iter = 1000,
control = list(max_treedepth = 20))
## Setting 'rescor' to TRUE by default for this model
## Warning: In the future, 'rescor' will be set to FALSE by default for all models.
## It is thus recommended to explicitely set 'rescor' via 'set_recor' instead of
## using the default.
## Warning: Rows containing NAs were excluded from the model.
## Compiling Stan program...
## Start sampling
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#tail-ess
m3a
## Family: MV(gaussian, gaussian, gaussian, gaussian)
## Links: mu = identity; sigma = identity
## mu = identity; sigma = identity
## mu = identity; sigma = identity
## mu = identity; sigma = identity
## Formula: frustrated ~ 1 + course + (1 | s | number) + (1 | p | assign)
## confident ~ 1 + course + (1 | s | number) + (1 | p | assign)
## interested ~ 1 + course + (1 | s | number) + (1 | p | assign)
## int_val_change ~ course
## Data: data (Number of observations: 776)
## Samples: 4 chains, each with iter = 1000; warmup = 500; thin = 1;
## total post-warmup samples = 2000
##
## Group-Level Effects:
## ~assign (Number of levels: 25)
## Estimate Est.Error l-95% CI
## sd(frustrated_Intercept) 0.34 0.06 0.24
## sd(confident_Intercept) 0.19 0.04 0.13
## sd(interested_Intercept) 0.15 0.03 0.10
## cor(frustrated_Intercept,confident_Intercept) -0.87 0.11 -0.99
## cor(frustrated_Intercept,interested_Intercept) -0.88 0.11 -0.99
## cor(confident_Intercept,interested_Intercept) 0.93 0.06 0.75
## u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(frustrated_Intercept) 0.49 1.00 478 875
## sd(confident_Intercept) 0.28 1.01 489 713
## sd(interested_Intercept) 0.22 1.00 512 666
## cor(frustrated_Intercept,confident_Intercept) -0.60 1.01 582 861
## cor(frustrated_Intercept,interested_Intercept) -0.58 1.01 685 1285
## cor(confident_Intercept,interested_Intercept) 1.00 1.00 1223 1227
##
## ~number (Number of levels: 65)
## Estimate Est.Error l-95% CI
## sd(frustrated_Intercept) 1.07 0.10 0.90
## sd(confident_Intercept) 0.86 0.08 0.71
## sd(interested_Intercept) 0.75 0.07 0.63
## cor(frustrated_Intercept,confident_Intercept) -0.62 0.08 -0.76
## cor(frustrated_Intercept,interested_Intercept) -0.27 0.12 -0.49
## cor(confident_Intercept,interested_Intercept) 0.66 0.08 0.50
## u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(frustrated_Intercept) 1.29 1.01 177 565
## sd(confident_Intercept) 1.02 1.00 333 509
## sd(interested_Intercept) 0.91 1.01 380 838
## cor(frustrated_Intercept,confident_Intercept) -0.46 1.01 243 631
## cor(frustrated_Intercept,interested_Intercept) 0.00 1.02 257 534
## cor(confident_Intercept,interested_Intercept) 0.79 1.01 322 618
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## frustrated_Intercept 2.59 0.17 2.26 2.92 1.04 153
## confident_Intercept 4.12 0.12 3.86 4.34 1.03 228
## interested_Intercept 4.33 0.10 4.12 4.53 1.02 250
## intvalchange_Intercept -0.16 0.04 -0.24 -0.09 1.00 3323
## frustrated_courseCOSC111 0.39 0.46 -0.47 1.30 1.02 331
## confident_courseCOSC111 -0.57 0.38 -1.32 0.16 1.02 334
## interested_courseCOSC111 -0.62 0.32 -1.27 0.02 1.01 384
## intvalchange_courseCOSC111 -0.23 0.13 -0.50 0.04 1.00 2752
## Tail_ESS
## frustrated_Intercept 267
## confident_Intercept 372
## interested_Intercept 371
## intvalchange_Intercept 1418
## frustrated_courseCOSC111 621
## confident_courseCOSC111 446
## interested_courseCOSC111 617
## intvalchange_courseCOSC111 1489
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_frustrated 0.75 0.03 0.71 0.81 1.00 520 659
## sigma_confident 0.61 0.02 0.58 0.66 1.00 842 790
## sigma_interested 0.54 0.04 0.48 0.62 1.01 417 717
## sigma_intvalchange 1.05 0.03 1.00 1.10 1.00 2679 1683
##
## Residual Correlations:
## Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(frustrated,confident) -0.26 0.04 -0.35 -0.18 1.00
## rescor(frustrated,interested) -0.15 0.07 -0.30 -0.01 1.01
## rescor(confident,interested) 0.37 0.06 0.25 0.49 1.01
## rescor(frustrated,intvalchange) -0.14 0.15 -0.42 0.15 1.01
## rescor(confident,intvalchange) 0.09 0.15 -0.22 0.36 1.01
## rescor(interested,intvalchange) 0.40 0.13 0.11 0.62 1.01
## Bulk_ESS Tail_ESS
## rescor(frustrated,confident) 679 671
## rescor(frustrated,interested) 283 543
## rescor(confident,interested) 395 710
## rescor(frustrated,intvalchange) 244 440
## rescor(confident,intvalchange) 336 600
## rescor(interested,intvalchange) 384 622
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
bf_1 <- bf(frustrated ~ 1 +
gender +
course +
self_eff +
(1|s|number) +
(1|p|assign))
bf_2 <- bf(confident ~ 1 +
gender +
course +
self_eff +
(1|s|number) +
(1|p|assign))
bf_3 <- bf(interested ~ 1 +
gender +
course +
self_eff +
(1|s|number) +
(1|p|assign))
bf_int <- bf(int_val_change ~ course + gender + self_eff)
m3e <- brm(bf_1 + bf_2 + bf_3 +
bf_int,
data = data,
chains = 4, cores = 4, iter = 1000,
control = list(max_treedepth = 20))
## Setting 'rescor' to TRUE by default for this model
## Warning: In the future, 'rescor' will be set to FALSE by default for all models.
## It is thus recommended to explicitely set 'rescor' via 'set_recor' instead of
## using the default.
## Warning: Rows containing NAs were excluded from the model.
## Compiling Stan program...
## recompiling to avoid crashing R session
## Start sampling
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#bulk-ess
m3e
## Family: MV(gaussian, gaussian, gaussian, gaussian)
## Links: mu = identity; sigma = identity
## mu = identity; sigma = identity
## mu = identity; sigma = identity
## mu = identity; sigma = identity
## Formula: frustrated ~ 1 + gender + course + self_eff + (1 | s | number) + (1 | p | assign)
## confident ~ 1 + gender + course + self_eff + (1 | s | number) + (1 | p | assign)
## interested ~ 1 + gender + course + self_eff + (1 | s | number) + (1 | p | assign)
## int_val_change ~ course + gender + self_eff
## Data: data (Number of observations: 770)
## Samples: 4 chains, each with iter = 1000; warmup = 500; thin = 1;
## total post-warmup samples = 2000
##
## Group-Level Effects:
## ~assign (Number of levels: 25)
## Estimate Est.Error l-95% CI
## sd(frustrated_Intercept) 0.33 0.06 0.23
## sd(confident_Intercept) 0.19 0.04 0.12
## sd(interested_Intercept) 0.15 0.03 0.10
## cor(frustrated_Intercept,confident_Intercept) -0.87 0.10 -0.99
## cor(frustrated_Intercept,interested_Intercept) -0.88 0.10 -0.99
## cor(confident_Intercept,interested_Intercept) 0.93 0.07 0.74
## u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(frustrated_Intercept) 0.47 1.01 644 981
## sd(confident_Intercept) 0.27 1.00 722 906
## sd(interested_Intercept) 0.22 1.00 812 1468
## cor(frustrated_Intercept,confident_Intercept) -0.60 1.00 948 1226
## cor(frustrated_Intercept,interested_Intercept) -0.65 1.00 981 1053
## cor(confident_Intercept,interested_Intercept) 1.00 1.00 1274 1792
##
## ~number (Number of levels: 64)
## Estimate Est.Error l-95% CI
## sd(frustrated_Intercept) 0.97 0.10 0.80
## sd(confident_Intercept) 0.69 0.07 0.57
## sd(interested_Intercept) 0.73 0.07 0.60
## cor(frustrated_Intercept,confident_Intercept) -0.47 0.10 -0.66
## cor(frustrated_Intercept,interested_Intercept) -0.15 0.13 -0.38
## cor(confident_Intercept,interested_Intercept) 0.64 0.08 0.47
## u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(frustrated_Intercept) 1.18 1.01 537 712
## sd(confident_Intercept) 0.85 1.01 573 860
## sd(interested_Intercept) 0.88 1.02 554 767
## cor(frustrated_Intercept,confident_Intercept) -0.26 1.01 421 637
## cor(frustrated_Intercept,interested_Intercept) 0.11 1.01 398 866
## cor(confident_Intercept,interested_Intercept) 0.78 1.01 675 982
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## frustrated_Intercept 3.12 0.26 2.60 3.63 1.00 472
## confident_Intercept 3.57 0.18 3.21 3.92 1.00 663
## interested_Intercept 4.04 0.19 3.69 4.40 1.00 742
## intvalchange_Intercept -0.10 0.07 -0.24 0.05 1.01 2561
## frustrated_genderMale -0.19 0.33 -0.83 0.47 1.01 373
## frustrated_courseCOSC111 0.34 0.45 -0.54 1.24 1.00 596
## frustrated_self_eff -0.55 0.16 -0.87 -0.21 1.01 455
## confident_genderMale 0.24 0.24 -0.23 0.70 1.01 540
## confident_courseCOSC111 -0.47 0.32 -1.10 0.12 1.00 701
## confident_self_eff 0.53 0.12 0.30 0.75 1.02 349
## interested_genderMale 0.21 0.23 -0.24 0.69 1.00 593
## interested_courseCOSC111 -0.43 0.33 -1.08 0.22 1.00 795
## interested_self_eff 0.18 0.12 -0.06 0.42 1.01 544
## intvalchange_courseCOSC111 -0.18 0.15 -0.47 0.12 1.00 2696
## intvalchange_genderMale -0.10 0.09 -0.28 0.09 1.00 2096
## intvalchange_self_eff 0.01 0.05 -0.08 0.11 1.00 2213
## Tail_ESS
## frustrated_Intercept 691
## confident_Intercept 982
## interested_Intercept 1058
## intvalchange_Intercept 1592
## frustrated_genderMale 504
## frustrated_courseCOSC111 873
## frustrated_self_eff 670
## confident_genderMale 841
## confident_courseCOSC111 975
## confident_self_eff 813
## interested_genderMale 821
## interested_courseCOSC111 1033
## interested_self_eff 1082
## intvalchange_courseCOSC111 1404
## intvalchange_genderMale 1567
## intvalchange_self_eff 1577
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_frustrated 0.76 0.03 0.71 0.82 1.00 928 913
## sigma_confident 0.61 0.02 0.58 0.66 1.00 1044 985
## sigma_interested 0.54 0.04 0.48 0.62 1.00 670 1164
## sigma_intvalchange 1.06 0.03 1.01 1.11 1.00 2586 1218
##
## Residual Correlations:
## Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(frustrated,confident) -0.26 0.04 -0.35 -0.17 1.00
## rescor(frustrated,interested) -0.15 0.07 -0.29 -0.02 1.00
## rescor(confident,interested) 0.37 0.05 0.27 0.48 1.00
## rescor(frustrated,intvalchange) -0.16 0.14 -0.43 0.13 1.01
## rescor(confident,intvalchange) 0.10 0.13 -0.17 0.35 1.01
## rescor(interested,intvalchange) 0.40 0.13 0.10 0.62 1.00
## Bulk_ESS Tail_ESS
## rescor(frustrated,confident) 1081 1106
## rescor(frustrated,interested) 668 1083
## rescor(confident,interested) 702 883
## rescor(frustrated,intvalchange) 591 855
## rescor(confident,intvalchange) 609 705
## rescor(interested,intvalchange) 608 877
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
bf_1 <- bf(frustrated ~ 1 +
course +
(1|s|number) +
(1|p|assign))
bf_2 <- bf(confident ~ 1 +
course +
(1|s|number) +
(1|p|assign))
bf_3 <- bf(interested ~ 1 +
course +
(1|s|number) +
(1|p|assign))
bf_int <- bf(int_val_post ~ int_val_pre + course)
m3a_pre <- brm(bf_1 + bf_2 + bf_3 +
bf_int,
data = data,
chains = 4, cores = 4, iter = 1000,
control = list(max_treedepth = 20))
## Setting 'rescor' to TRUE by default for this model
## Warning: In the future, 'rescor' will be set to FALSE by default for all models.
## It is thus recommended to explicitely set 'rescor' via 'set_recor' instead of
## using the default.
## Warning: Rows containing NAs were excluded from the model.
## Compiling Stan program...
## Start sampling
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#tail-ess
m3a_pre
## Family: MV(gaussian, gaussian, gaussian, gaussian)
## Links: mu = identity; sigma = identity
## mu = identity; sigma = identity
## mu = identity; sigma = identity
## mu = identity; sigma = identity
## Formula: frustrated ~ 1 + course + (1 | s | number) + (1 | p | assign)
## confident ~ 1 + course + (1 | s | number) + (1 | p | assign)
## interested ~ 1 + course + (1 | s | number) + (1 | p | assign)
## int_val_post ~ int_val_pre + course
## Data: data (Number of observations: 776)
## Samples: 4 chains, each with iter = 1000; warmup = 500; thin = 1;
## total post-warmup samples = 2000
##
## Group-Level Effects:
## ~assign (Number of levels: 25)
## Estimate Est.Error l-95% CI
## sd(frustrated_Intercept) 0.33 0.06 0.22
## sd(confident_Intercept) 0.19 0.04 0.13
## sd(interested_Intercept) 0.15 0.03 0.10
## cor(frustrated_Intercept,confident_Intercept) -0.88 0.09 -0.99
## cor(frustrated_Intercept,interested_Intercept) -0.89 0.10 -0.99
## cor(confident_Intercept,interested_Intercept) 0.93 0.07 0.76
## u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(frustrated_Intercept) 0.47 1.00 538 941
## sd(confident_Intercept) 0.28 1.00 756 1030
## sd(interested_Intercept) 0.22 1.00 788 1198
## cor(frustrated_Intercept,confident_Intercept) -0.64 1.00 783 1004
## cor(frustrated_Intercept,interested_Intercept) -0.64 1.00 857 1079
## cor(confident_Intercept,interested_Intercept) 1.00 1.00 1405 1686
##
## ~number (Number of levels: 65)
## Estimate Est.Error l-95% CI
## sd(frustrated_Intercept) 1.04 0.10 0.87
## sd(confident_Intercept) 0.82 0.08 0.67
## sd(interested_Intercept) 0.67 0.07 0.55
## cor(frustrated_Intercept,confident_Intercept) -0.60 0.09 -0.75
## cor(frustrated_Intercept,interested_Intercept) -0.20 0.13 -0.44
## cor(confident_Intercept,interested_Intercept) 0.61 0.09 0.42
## u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(frustrated_Intercept) 1.24 1.01 288 776
## sd(confident_Intercept) 1.00 1.01 285 610
## sd(interested_Intercept) 0.82 1.02 337 705
## cor(frustrated_Intercept,confident_Intercept) -0.39 1.01 282 579
## cor(frustrated_Intercept,interested_Intercept) 0.09 1.01 288 435
## cor(confident_Intercept,interested_Intercept) 0.76 1.01 353 686
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## frustrated_Intercept 2.59 0.16 2.26 2.90 1.01 252
## confident_Intercept 4.13 0.12 3.87 4.36 1.00 251
## interested_Intercept 4.33 0.10 4.13 4.52 1.02 278
## intvalpost_Intercept 0.45 0.06 0.33 0.58 1.00 1876
## frustrated_courseCOSC111 0.38 0.44 -0.48 1.26 1.01 342
## confident_courseCOSC111 -0.54 0.35 -1.28 0.09 1.01 346
## interested_courseCOSC111 -0.56 0.30 -1.16 0.01 1.01 331
## intvalpost_int_val_pre 0.55 0.04 0.46 0.62 1.00 1754
## intvalpost_courseCOSC111 -0.45 0.13 -0.70 -0.21 1.00 2549
## Tail_ESS
## frustrated_Intercept 482
## confident_Intercept 446
## interested_Intercept 522
## intvalpost_Intercept 1680
## frustrated_courseCOSC111 626
## confident_courseCOSC111 655
## interested_courseCOSC111 482
## intvalpost_int_val_pre 1619
## intvalpost_courseCOSC111 1465
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_frustrated 0.78 0.04 0.71 0.87 1.02 242 384
## sigma_confident 0.65 0.04 0.59 0.73 1.04 201 614
## sigma_interested 0.61 0.05 0.52 0.71 1.02 378 631
## sigma_intvalpost 0.98 0.02 0.94 1.03 1.00 2892 1286
##
## Residual Correlations:
## Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(frustrated,confident) -0.32 0.06 -0.46 -0.20 1.03
## rescor(frustrated,interested) -0.23 0.09 -0.41 -0.06 1.03
## rescor(confident,interested) 0.47 0.07 0.32 0.60 1.05
## rescor(frustrated,intvalpost) -0.27 0.14 -0.52 0.03 1.02
## rescor(confident,intvalpost) 0.33 0.13 0.02 0.56 1.05
## rescor(interested,intvalpost) 0.59 0.09 0.38 0.73 1.02
## Bulk_ESS Tail_ESS
## rescor(frustrated,confident) 199 384
## rescor(frustrated,interested) 177 391
## rescor(confident,interested) 160 488
## rescor(frustrated,intvalpost) 172 365
## rescor(confident,intvalpost) 233 532
## rescor(interested,intvalpost) 378 569
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
bf_1 <- bf(frustrated ~ 1 +
gender +
course +
self_eff +
(1|s|number) +
(1|p|assign))
bf_2 <- bf(confident ~ 1 +
gender +
course +
self_eff +
(1|s|number) +
(1|p|assign))
bf_3 <- bf(interested ~ 1 +
gender +
course +
self_eff +
(1|s|number) +
(1|p|assign))
bf_int <- bf(int_val_post ~ int_val_pre + course + gender + self_eff)
m3e_pre <- brm(bf_1 + bf_2 + bf_3 +
bf_int,
data = data,
chains = 4, cores = 4, iter = 1000,
control = list(max_treedepth = 20))
## Setting 'rescor' to TRUE by default for this model
## Warning: In the future, 'rescor' will be set to FALSE by default for all models.
## It is thus recommended to explicitely set 'rescor' via 'set_recor' instead of
## using the default.
## Warning: Rows containing NAs were excluded from the model.
## Compiling Stan program...
## recompiling to avoid crashing R session
## Start sampling
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#bulk-ess
m3e_pre
## Family: MV(gaussian, gaussian, gaussian, gaussian)
## Links: mu = identity; sigma = identity
## mu = identity; sigma = identity
## mu = identity; sigma = identity
## mu = identity; sigma = identity
## Formula: frustrated ~ 1 + gender + course + self_eff + (1 | s | number) + (1 | p | assign)
## confident ~ 1 + gender + course + self_eff + (1 | s | number) + (1 | p | assign)
## interested ~ 1 + gender + course + self_eff + (1 | s | number) + (1 | p | assign)
## int_val_post ~ int_val_pre + course + gender + self_eff
## Data: data (Number of observations: 770)
## Samples: 4 chains, each with iter = 1000; warmup = 500; thin = 1;
## total post-warmup samples = 2000
##
## Group-Level Effects:
## ~assign (Number of levels: 25)
## Estimate Est.Error l-95% CI
## sd(frustrated_Intercept) 0.33 0.06 0.22
## sd(confident_Intercept) 0.19 0.04 0.13
## sd(interested_Intercept) 0.15 0.03 0.10
## cor(frustrated_Intercept,confident_Intercept) -0.87 0.10 -0.99
## cor(frustrated_Intercept,interested_Intercept) -0.89 0.10 -0.99
## cor(confident_Intercept,interested_Intercept) 0.93 0.07 0.74
## u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(frustrated_Intercept) 0.46 1.00 486 670
## sd(confident_Intercept) 0.28 1.00 621 906
## sd(interested_Intercept) 0.22 1.00 737 1000
## cor(frustrated_Intercept,confident_Intercept) -0.63 1.01 589 1010
## cor(frustrated_Intercept,interested_Intercept) -0.63 1.01 801 1434
## cor(confident_Intercept,interested_Intercept) 1.00 1.00 1242 1443
##
## ~number (Number of levels: 64)
## Estimate Est.Error l-95% CI
## sd(frustrated_Intercept) 0.96 0.09 0.80
## sd(confident_Intercept) 0.67 0.06 0.55
## sd(interested_Intercept) 0.64 0.06 0.52
## cor(frustrated_Intercept,confident_Intercept) -0.46 0.11 -0.65
## cor(frustrated_Intercept,interested_Intercept) -0.11 0.14 -0.35
## cor(confident_Intercept,interested_Intercept) 0.59 0.09 0.40
## u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(frustrated_Intercept) 1.16 1.01 452 820
## sd(confident_Intercept) 0.81 1.01 495 867
## sd(interested_Intercept) 0.78 1.01 440 839
## cor(frustrated_Intercept,confident_Intercept) -0.21 1.01 338 649
## cor(frustrated_Intercept,interested_Intercept) 0.15 1.01 293 622
## cor(confident_Intercept,interested_Intercept) 0.76 1.01 403 771
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## frustrated_Intercept 3.12 0.24 2.61 3.57 1.01 383
## confident_Intercept 3.57 0.17 3.22 3.90 1.00 519
## interested_Intercept 4.04 0.16 3.72 4.35 1.00 430
## intvalpost_Intercept 0.43 0.08 0.28 0.57 1.00 2425
## frustrated_genderMale -0.17 0.31 -0.75 0.47 1.01 402
## frustrated_courseCOSC111 0.35 0.45 -0.55 1.22 1.01 423
## frustrated_self_eff -0.56 0.16 -0.87 -0.22 1.01 366
## confident_genderMale 0.25 0.22 -0.17 0.67 1.00 378
## confident_courseCOSC111 -0.48 0.32 -1.08 0.14 1.01 474
## confident_self_eff 0.53 0.11 0.32 0.76 1.02 421
## interested_genderMale 0.24 0.22 -0.19 0.67 1.01 386
## interested_courseCOSC111 -0.42 0.30 -1.01 0.19 1.00 465
## interested_self_eff 0.17 0.11 -0.04 0.37 1.02 373
## intvalpost_int_val_pre 0.40 0.04 0.32 0.49 1.00 1589
## intvalpost_courseCOSC111 -0.36 0.14 -0.62 -0.10 1.00 2280
## intvalpost_genderMale 0.02 0.09 -0.15 0.19 1.00 1678
## intvalpost_self_eff 0.26 0.05 0.17 0.36 1.00 1858
## Tail_ESS
## frustrated_Intercept 551
## confident_Intercept 844
## interested_Intercept 642
## intvalpost_Intercept 1699
## frustrated_genderMale 707
## frustrated_courseCOSC111 691
## frustrated_self_eff 653
## confident_genderMale 553
## confident_courseCOSC111 780
## confident_self_eff 756
## interested_genderMale 636
## interested_courseCOSC111 898
## interested_self_eff 592
## intvalpost_int_val_pre 1462
## intvalpost_courseCOSC111 1481
## intvalpost_genderMale 1396
## intvalpost_self_eff 1545
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_frustrated 0.76 0.03 0.71 0.84 1.00 462 574
## sigma_confident 0.64 0.03 0.59 0.70 1.00 575 617
## sigma_interested 0.61 0.05 0.53 0.71 1.00 494 834
## sigma_intvalpost 0.96 0.02 0.91 1.01 1.00 2133 1376
##
## Residual Correlations:
## Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(frustrated,confident) -0.28 0.05 -0.40 -0.18 1.00
## rescor(frustrated,interested) -0.19 0.09 -0.35 -0.01 1.01
## rescor(confident,interested) 0.44 0.06 0.32 0.57 1.00
## rescor(frustrated,intvalpost) -0.19 0.14 -0.45 0.08 1.01
## rescor(confident,intvalpost) 0.28 0.11 0.04 0.48 1.01
## rescor(interested,intvalpost) 0.60 0.08 0.41 0.73 1.01
## Bulk_ESS Tail_ESS
## rescor(frustrated,confident) 385 522
## rescor(frustrated,interested) 293 462
## rescor(confident,interested) 504 695
## rescor(frustrated,intvalpost) 319 476
## rescor(confident,intvalpost) 475 629
## rescor(interested,intvalpost) 491 833
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
bf_1 <- bf(frustrated ~ 1 +
course +
(1|s|number) +
(1|p|assign))
bf_2 <- bf(confident ~ 1 +
course +
(1|s|number) +
(1|p|assign))
bf_3 <- bf(interested ~ 1 +
course +
(1|s|number) +
(1|p|assign))
bf_int <- bf(final_score ~ course)
m4a <- brm(bf_1 + bf_2 + bf_3 +
bf_int,
data = data,
chains = 4, cores = 4, iter = 1000,
control = list(max_treedepth = 20))
## Setting 'rescor' to TRUE by default for this model
## Warning: In the future, 'rescor' will be set to FALSE by default for all models.
## It is thus recommended to explicitely set 'rescor' via 'set_recor' instead of
## using the default.
## Warning: Rows containing NAs were excluded from the model.
## Compiling Stan program...
## Start sampling
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#tail-ess
m4a
## Family: MV(gaussian, gaussian, gaussian, gaussian)
## Links: mu = identity; sigma = identity
## mu = identity; sigma = identity
## mu = identity; sigma = identity
## mu = identity; sigma = identity
## Formula: frustrated ~ 1 + course + (1 | s | number) + (1 | p | assign)
## confident ~ 1 + course + (1 | s | number) + (1 | p | assign)
## interested ~ 1 + course + (1 | s | number) + (1 | p | assign)
## final_score ~ course
## Data: data (Number of observations: 831)
## Samples: 4 chains, each with iter = 1000; warmup = 500; thin = 1;
## total post-warmup samples = 2000
##
## Group-Level Effects:
## ~assign (Number of levels: 25)
## Estimate Est.Error l-95% CI
## sd(frustrated_Intercept) 0.33 0.06 0.22
## sd(confident_Intercept) 0.19 0.04 0.13
## sd(interested_Intercept) 0.16 0.03 0.11
## cor(frustrated_Intercept,confident_Intercept) -0.89 0.09 -0.99
## cor(frustrated_Intercept,interested_Intercept) -0.90 0.08 -0.99
## cor(confident_Intercept,interested_Intercept) 0.95 0.05 0.80
## u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(frustrated_Intercept) 0.47 1.00 407 599
## sd(confident_Intercept) 0.27 1.00 532 703
## sd(interested_Intercept) 0.23 1.00 554 916
## cor(frustrated_Intercept,confident_Intercept) -0.67 1.00 613 862
## cor(frustrated_Intercept,interested_Intercept) -0.67 1.00 630 1022
## cor(confident_Intercept,interested_Intercept) 1.00 1.00 1157 1317
##
## ~number (Number of levels: 71)
## Estimate Est.Error l-95% CI
## sd(frustrated_Intercept) 0.97 0.09 0.82
## sd(confident_Intercept) 0.82 0.08 0.68
## sd(interested_Intercept) 0.84 0.07 0.70
## cor(frustrated_Intercept,confident_Intercept) -0.57 0.09 -0.72
## cor(frustrated_Intercept,interested_Intercept) -0.33 0.11 -0.54
## cor(confident_Intercept,interested_Intercept) 0.65 0.08 0.48
## u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(frustrated_Intercept) 1.17 1.01 307 523
## sd(confident_Intercept) 0.99 1.01 200 520
## sd(interested_Intercept) 1.00 1.02 280 616
## cor(frustrated_Intercept,confident_Intercept) -0.38 1.02 226 570
## cor(frustrated_Intercept,interested_Intercept) -0.11 1.01 215 424
## cor(confident_Intercept,interested_Intercept) 0.78 1.02 250 339
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## frustrated_Intercept 2.63 0.15 2.33 2.90 1.03 177
## confident_Intercept 4.15 0.11 3.94 4.38 1.03 162
## interested_Intercept 4.29 0.11 4.08 4.52 1.04 160
## finalscore_Intercept 93.76 0.39 93.01 94.54 1.00 2307
## frustrated_courseCOSC111 0.05 0.41 -0.75 0.86 1.01 319
## confident_courseCOSC111 -0.38 0.32 -0.99 0.26 1.01 413
## interested_courseCOSC111 -0.40 0.32 -1.02 0.21 1.01 394
## finalscore_courseCOSC111 2.96 1.52 -0.10 5.82 1.01 2916
## Tail_ESS
## frustrated_Intercept 392
## confident_Intercept 321
## interested_Intercept 335
## finalscore_Intercept 1649
## frustrated_courseCOSC111 769
## confident_courseCOSC111 740
## interested_courseCOSC111 607
## finalscore_courseCOSC111 1304
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_frustrated 0.89 0.06 0.78 1.02 1.01 258 494
## sigma_confident 0.63 0.03 0.58 0.72 1.01 301 391
## sigma_interested 0.50 0.02 0.46 0.56 1.01 325 369
## sigma_finalscore 11.28 0.28 10.73 11.84 1.00 2697 1334
##
## Residual Correlations:
## Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(frustrated,confident) -0.38 0.07 -0.52 -0.24 1.01
## rescor(frustrated,interested) -0.19 0.10 -0.38 0.02 1.02
## rescor(confident,interested) 0.43 0.06 0.32 0.56 1.01
## rescor(frustrated,finalscore) -0.52 0.09 -0.67 -0.31 1.01
## rescor(confident,finalscore) 0.32 0.13 0.05 0.56 1.01
## rescor(interested,finalscore) 0.17 0.18 -0.21 0.48 1.02
## Bulk_ESS Tail_ESS
## rescor(frustrated,confident) 266 466
## rescor(frustrated,interested) 222 363
## rescor(confident,interested) 270 392
## rescor(frustrated,finalscore) 246 473
## rescor(confident,finalscore) 247 345
## rescor(interested,finalscore) 226 322
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
bf_1 <- bf(frustrated ~ 1 +
gender +
course +
self_eff +
(1|s|number) +
(1|p|assign))
bf_2 <- bf(confident ~ 1 +
gender +
course +
self_eff +
(1|s|number) +
(1|p|assign))
bf_3 <- bf(interested ~ 1 +
gender +
course +
self_eff +
(1|s|number) +
(1|p|assign))
bf_int <- bf(final_score~ course + gender + self_eff)
m4c <- brm(bf_1 + bf_2 + bf_3 +
bf_int,
data = data,
chains = 4, cores = 4, iter = 1000,
control = list(max_treedepth = 20))
## Setting 'rescor' to TRUE by default for this model
## Warning: In the future, 'rescor' will be set to FALSE by default for all models.
## It is thus recommended to explicitely set 'rescor' via 'set_recor' instead of
## using the default.
## Warning: Rows containing NAs were excluded from the model.
## Compiling Stan program...
## recompiling to avoid crashing R session
## Start sampling
m4c
## Family: MV(gaussian, gaussian, gaussian, gaussian)
## Links: mu = identity; sigma = identity
## mu = identity; sigma = identity
## mu = identity; sigma = identity
## mu = identity; sigma = identity
## Formula: frustrated ~ 1 + gender + course + self_eff + (1 | s | number) + (1 | p | assign)
## confident ~ 1 + gender + course + self_eff + (1 | s | number) + (1 | p | assign)
## interested ~ 1 + gender + course + self_eff + (1 | s | number) + (1 | p | assign)
## final_score ~ course + gender + self_eff
## Data: data (Number of observations: 816)
## Samples: 4 chains, each with iter = 1000; warmup = 500; thin = 1;
## total post-warmup samples = 2000
##
## Group-Level Effects:
## ~assign (Number of levels: 25)
## Estimate Est.Error l-95% CI
## sd(frustrated_Intercept) 0.34 0.06 0.23
## sd(confident_Intercept) 0.19 0.04 0.13
## sd(interested_Intercept) 0.17 0.03 0.11
## cor(frustrated_Intercept,confident_Intercept) -0.89 0.09 -0.99
## cor(frustrated_Intercept,interested_Intercept) -0.90 0.09 -0.99
## cor(confident_Intercept,interested_Intercept) 0.94 0.06 0.79
## u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(frustrated_Intercept) 0.47 1.00 818 951
## sd(confident_Intercept) 0.27 1.00 974 1117
## sd(interested_Intercept) 0.23 1.00 1044 1404
## cor(frustrated_Intercept,confident_Intercept) -0.65 1.00 1129 1567
## cor(frustrated_Intercept,interested_Intercept) -0.66 1.00 1163 1372
## cor(confident_Intercept,interested_Intercept) 1.00 1.00 1544 1482
##
## ~number (Number of levels: 69)
## Estimate Est.Error l-95% CI
## sd(frustrated_Intercept) 0.91 0.09 0.76
## sd(confident_Intercept) 0.71 0.07 0.59
## sd(interested_Intercept) 0.83 0.08 0.70
## cor(frustrated_Intercept,confident_Intercept) -0.50 0.10 -0.68
## cor(frustrated_Intercept,interested_Intercept) -0.32 0.12 -0.54
## cor(confident_Intercept,interested_Intercept) 0.66 0.08 0.49
## u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(frustrated_Intercept) 1.12 1.01 569 857
## sd(confident_Intercept) 0.85 1.00 806 1197
## sd(interested_Intercept) 0.99 1.00 565 609
## cor(frustrated_Intercept,confident_Intercept) -0.28 1.00 519 829
## cor(frustrated_Intercept,interested_Intercept) -0.08 1.00 616 868
## cor(confident_Intercept,interested_Intercept) 0.79 1.01 597 774
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## frustrated_Intercept 3.10 0.24 2.65 3.58 1.00 738
## confident_Intercept 3.64 0.17 3.31 3.98 1.01 869
## interested_Intercept 4.09 0.20 3.69 4.47 1.00 945
## finalscore_Intercept 91.75 0.70 90.46 93.14 1.00 3089
## frustrated_genderMale -0.05 0.30 -0.64 0.54 1.02 645
## frustrated_courseCOSC111 0.06 0.40 -0.74 0.82 1.00 943
## frustrated_self_eff -0.59 0.15 -0.88 -0.27 1.01 601
## confident_genderMale 0.11 0.22 -0.31 0.54 1.01 781
## confident_courseCOSC111 -0.32 0.30 -0.93 0.25 1.01 867
## confident_self_eff 0.56 0.12 0.33 0.79 1.01 643
## interested_genderMale 0.05 0.26 -0.42 0.58 1.01 730
## interested_courseCOSC111 -0.26 0.36 -0.94 0.46 1.01 902
## interested_self_eff 0.20 0.13 -0.07 0.47 1.00 798
## finalscore_courseCOSC111 3.32 1.47 0.47 6.07 1.00 2710
## finalscore_genderMale -2.64 0.96 -4.47 -0.75 1.00 2887
## finalscore_self_eff 5.09 0.51 4.07 6.06 1.00 2658
## Tail_ESS
## frustrated_Intercept 949
## confident_Intercept 1143
## interested_Intercept 1095
## finalscore_Intercept 1538
## frustrated_genderMale 656
## frustrated_courseCOSC111 1384
## frustrated_self_eff 744
## confident_genderMale 938
## confident_courseCOSC111 1006
## confident_self_eff 845
## interested_genderMale 1014
## interested_courseCOSC111 1076
## interested_self_eff 1076
## finalscore_courseCOSC111 1695
## finalscore_genderMale 1758
## finalscore_self_eff 1531
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_frustrated 0.83 0.05 0.75 0.95 1.00 643 1136
## sigma_confident 0.60 0.02 0.57 0.65 1.00 990 597
## sigma_interested 0.49 0.02 0.46 0.54 1.00 1039 947
## sigma_finalscore 10.58 0.26 10.07 11.11 1.00 2232 1448
##
## Residual Correlations:
## Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(frustrated,confident) -0.29 0.06 -0.42 -0.16 1.00
## rescor(frustrated,interested) -0.13 0.09 -0.30 0.03 1.00
## rescor(confident,interested) 0.41 0.04 0.33 0.49 1.00
## rescor(frustrated,finalscore) -0.43 0.11 -0.62 -0.20 1.01
## rescor(confident,finalscore) 0.11 0.13 -0.15 0.37 1.00
## rescor(interested,finalscore) 0.08 0.18 -0.28 0.42 1.01
## Bulk_ESS Tail_ESS
## rescor(frustrated,confident) 678 731
## rescor(frustrated,interested) 714 874
## rescor(confident,interested) 1237 1209
## rescor(frustrated,finalscore) 632 825
## rescor(confident,finalscore) 662 682
## rescor(interested,finalscore) 670 752
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).