Soy Licenciado en Ciencias Matemática Estadística por la Facultad de Ciencias Exactas y Naturales de la Universidad Nacional de Asunción, mismo lugar donde realicé el curso de Maestría en Matemática Estadística. Actualmente me dedico a enseñar estadísticas en la universidad, pero mi principal ocupación es la función pública donde tengo la responsabilidad de dirigir un departamento donde nos dedicamos a gestionar datos, especialmente de registros administrativos para la elaboración de proyecciones demográficas, económicas y actuariales que sirven para la toma de decisiones gerenciales. Esto apoyado principalmente en el manejo de una excelente herramienta como es el software R.
Figure 1.1: Prof. Diego Meza
Este documento ha sido elaborado como material de apoyo para el curso de Inferencia Estadística II. En el son incorporados varios ejemplos resueltos con el software estadístico \(R\) y relacionados a los conceptos estudiados en la materia. En cada sección se incluyen los códigos necesarios para realizar las simulaciones que permiten verificar las propiedades y teoremas que son abordados en el curso. Para que puedas replicarlos basta con que tengas instalado el programa ya sea en la versión simple o la incorporada en la versión R-studio, copia los códigos y ejecútalos en un script en tu escritorio. Adicionalmente se incluyen una serie de estudios de casos para que puedas aplicar las teorías en la solución de problemas reales y así asimilar corréctamente los contenidos del curso. Es imprescindible que como egresado de la carrera de Estadísticas tengas manejo de al menos una herramienta para el análisis estadístico, y R es una excelente opción que tienes y es totalmente gratuito.
R es un programa estadístico de libre acceso con funcionalidades imprescindibles para la programación y análisis estadístico.
A continuación te dejamos algunos enlaces interesantes para aprender a usar R como herramienta para el análisis estadístico
Puede resultar de mucha utilidad trabajar y guardar los comandos usados en un “script” de R. El script es básicamente un documento de texto donde uno puede ir escribiendo todos los comandos a ejecutar. Considerando el hecho de que si se antepone a una línea de comando el signo #, este no será ejecutado y el programa lo considerará como un comentario.
Figure 4.1: Script en R
Puedes usar el programa R como una calculadora, basta con conocer cuáles son los signos y comandos a utilizar para realizar las opereaciones. Copia los comandos en tu script de R y ejecútalos para ver los resultados.
#suma
2+2
## [1] 4
#multiplicación
2*2
## [1] 4
#división
2/2
## [1] 1
#potencia
4^2
## [1] 16
#raíz cuadrada
sqrt(16)
## [1] 4
R ya incorpora una serie de bases de datos que te pueden resultar de utilidad para empezar a explorar las posibilidades de análisis estadístico que te ofrece este programa.
Como ejemplo vamos a explorara la base de datos llamada “cars”
#cargar la base
data(cars)
#visualizar los encabezados
head(cars)
## speed dist
## 1 4 2
## 2 4 10
## 3 7 4
## 4 7 22
## 5 8 16
## 6 9 10
#resumir con algunas estadísticas las variables de la base
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
Puedes agregar fácilmente gráficos a tu análisis. Por ejemplo:
data(pressure)
head(pressure)
## temperature pressure
## 1 0 0.0002
## 2 20 0.0012
## 3 40 0.0060
## 4 60 0.0300
## 5 80 0.0900
## 6 100 0.2700
plot(pressure)
Figure 4.2: Plot Pressure
boxplot(pressure)
Figure 4.3: Boxplot
edad<-c(11,12,15,20,41)
edad
## [1] 11 12 15 20 41
altura=c(50,65,120,156,182)
altura
## [1] 50 65 120 156 182
datos=data.frame(edad,altura)
datos
## edad altura
## 1 11 50
## 2 12 65
## 3 15 120
## 4 20 156
## 5 41 182
plot(datos,type="b")
Una de las cosas más importantes a la hora de trabajar con R es aprender a usar la ayuda. Para obtener la ayuda sobre alguna función o comando de R basta con escribir el comando help() y dentro del paréntesis incluir el nombre de la función o comando
En esta sección veremos como podemos utilizar R para estudiar los fundamentos de la Inferencia Estadística, nos apoyaremos principalmente en la realización de simulaciones para verificar las propiedades, teoremas y supuestos que conforman la teoría de la inferencia estadística.
Para simular los valores de una variable aleatoria R nos provee una amplia gama de comandos, entre ellos veremos algunos como los siguientes:
#X es el conjunto de los números del 1 al 5
x <- seq (1, 5)
x
## [1] 1 2 3 4 5
#X es un conjunto formado por la secuencia de números desde el -6 hasta el valor 6 con saltos de valor 0,1
# help(seq)
x <- seq ( -6, 6,by=0.1)
x
## [1] -6.0 -5.9 -5.8 -5.7 -5.6 -5.5 -5.4 -5.3 -5.2 -5.1 -5.0 -4.9 -4.8 -4.7 -4.6
## [16] -4.5 -4.4 -4.3 -4.2 -4.1 -4.0 -3.9 -3.8 -3.7 -3.6 -3.5 -3.4 -3.3 -3.2 -3.1
## [31] -3.0 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2.0 -1.9 -1.8 -1.7 -1.6
## [46] -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1
## [61] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
## [76] 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
## [91] 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4
## [106] 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
## [121] 6.0
#X es un conjunto formado por la secuencia de 100 números desde el -6 hasta el valor 6 redondeado con tres valores decimales
x <- round(seq ( -6, 6, len=100 ),3)
x
## [1] -6.000 -5.879 -5.758 -5.636 -5.515 -5.394 -5.273 -5.152 -5.030 -4.909
## [11] -4.788 -4.667 -4.545 -4.424 -4.303 -4.182 -4.061 -3.939 -3.818 -3.697
## [21] -3.576 -3.455 -3.333 -3.212 -3.091 -2.970 -2.848 -2.727 -2.606 -2.485
## [31] -2.364 -2.242 -2.121 -2.000 -1.879 -1.758 -1.636 -1.515 -1.394 -1.273
## [41] -1.152 -1.030 -0.909 -0.788 -0.667 -0.545 -0.424 -0.303 -0.182 -0.061
## [51] 0.061 0.182 0.303 0.424 0.545 0.667 0.788 0.909 1.030 1.152
## [61] 1.273 1.394 1.515 1.636 1.758 1.879 2.000 2.121 2.242 2.364
## [71] 2.485 2.606 2.727 2.848 2.970 3.091 3.212 3.333 3.455 3.576
## [81] 3.697 3.818 3.939 4.061 4.182 4.303 4.424 4.545 4.667 4.788
## [91] 4.909 5.030 5.152 5.273 5.394 5.515 5.636 5.758 5.879 6.000
# Muestra aleatoria extraida CON reposición de la población P
P=c(1,2,3,4,5,6,7,8,9,10)
muestra1=sample(P,5,rep=T)
muestra1
## [1] 1 2 10 6 5
# Muestra aleatoria extraida SIN reposición de la población P
P=c(1,2,3,4,5,6,7,8,9,10)
muestra1=sample(P,5,rep=F)
muestra1
## [1] 6 5 2 8 10
# 10 Muestras aleatorias de tamaño 3 obtenidas con reposición de la población P
muestras1<-sapply(1:10, function(x){(sample(P,3,rep=T))})
muestras1
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 4 8 1 3 9 1 8 5 7 7
## [2,] 7 9 5 9 4 2 9 9 3 2
## [3,] 10 1 2 6 2 3 9 2 7 7
# 10 Muestras aleatorias de tamaño 3 obtenidas sin reposición de la población P
muestras2<-sapply(1:10, function(x){(sample(P,3,rep=F))})
muestras2
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 2 9 10 4 10 3 2 10 8 1
## [2,] 4 4 6 5 2 6 1 9 4 9
## [3,] 3 2 5 2 3 4 9 8 10 3
Estudio de caso
Una empresa tiene una nómina de 2850 empleados y desea aplicar una encuesta sobre el clima laboral. Para ello desean seleccionar una muestra aleatoria del 10% de los empleados. La empresa dispone de una enumeración del 1 al 2850 asociado a cada número de cédula de identidad. a) Seleccione la muestra usando un comando de R.
empleados=seq(1,2850,by=1)
head(empleados)
## [1] 1 2 3 4 5 6
tail(empleados)
## [1] 2845 2846 2847 2848 2849 2850
muestra_empleados=sample(empleados,285,replace=F)
muestra_empleados
## [1] 1552 2224 2183 752 672 1086 50 995 2503 1828 2519 601 2132 1198 545
## [16] 1079 337 2255 1697 328 821 2665 1153 827 1155 1829 298 203 1173 2769
## [31] 2387 1930 73 802 860 1409 1214 1993 1634 877 2062 2569 2372 1823 1301
## [46] 914 568 980 1997 208 1768 306 901 2390 1255 1391 618 495 1963 1361
## [61] 1425 1188 1755 491 2217 2001 2240 2299 2473 1132 2791 788 1010 1570 1925
## [76] 1504 1538 2527 2119 1262 178 2035 2578 2752 2831 2782 2347 1781 1520 1149
## [91] 2079 2755 2275 263 1279 2253 1607 485 2725 1673 1001 268 996 2603 1328
## [106] 121 1934 2747 1787 717 2788 1389 2018 793 2395 2840 1596 225 2374 782
## [121] 2128 795 1417 1096 168 650 1063 1718 1507 366 2033 1532 1540 1774 1554
## [136] 1646 1428 918 1374 1572 1918 743 2481 2356 1475 1771 1115 2064 2273 1899
## [151] 564 907 673 2267 2386 2589 2338 331 2565 1640 1992 1364 2061 710 1817
## [166] 112 699 1658 1739 1011 2000 938 1000 339 1687 2543 1055 525 2408 2721
## [181] 1066 974 2615 140 555 2084 2597 1660 2058 2289 1886 2293 2645 122 686
## [196] 2400 2234 557 775 34 1466 483 1213 1333 1561 2418 527 1211 1045 1058
## [211] 1813 2608 2325 107 311 114 305 1229 1825 2790 1227 313 2567 559 350
## [226] 1182 2305 513 2470 2697 1178 2763 2757 2516 1765 137 2454 2726 770 1471
## [241] 195 2117 106 1815 2535 2167 837 925 2160 1061 929 2354 1351 83 1526
## [256] 63 2192 1110 1111 745 1990 1736 2177 993 839 1246 2706 2410 241 2211
## [271] 2736 1320 1244 20 2610 2229 1900 917 88 2682 1509 1131 2046 2495 2102
mu10=sample(runif(100,0,1),50,rep=T)
mu10
## [1] 0.90439384 0.51298980 0.14161706 0.93296125 0.06215953 0.79839163
## [7] 0.92669620 0.71202412 0.58411738 0.66317560 0.71791719 0.20245410
## [13] 0.18296618 0.71351920 0.55415663 0.71202412 0.57716197 0.46470751
## [19] 0.58142751 0.10497042 0.49461688 0.52941514 0.40565468 0.12835015
## [25] 0.88585163 0.43468714 0.94419825 0.49994079 0.64244546 0.96922541
## [31] 0.04065793 0.21566803 0.07816725 0.10497042 0.18296618 0.07816725
## [37] 0.64701236 0.58411738 0.23485918 0.63219227 0.43468714 0.54418285
## [43] 0.74000731 0.58435426 0.72660186 0.58411738 0.56419952 0.06215953
## [49] 0.96922541 0.04879588
hist(mu10)
mu1000=sample(runif(100,0,1),1000,rep=T)
head(mu1000)
## [1] 0.9822786 0.6949641 0.3925637 0.4894968 0.7816827 0.3475220
tail(mu1000)
## [1] 0.6618397 0.2124173 0.1152324 0.7873887 0.8244043 0.5827744
hist(mu1000)
** Estudio de caso **
Simular una población de 100 personas donde la variable de interés es el sexo y se sabe que el 80% son mujeres.
sexo=rbinom(100,1,0.8)
sexo
## [1] 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [38] 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0
## [75] 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0
sexo=factor(sexo, levels = c(0,1),labels = c("Hombre", "Mujer"))
sexo
## [1] Mujer Mujer Hombre Mujer Mujer Mujer Hombre Mujer Mujer Hombre
## [11] Mujer Hombre Mujer Mujer Mujer Hombre Mujer Mujer Mujer Mujer
## [21] Mujer Hombre Mujer Mujer Mujer Mujer Mujer Mujer Mujer Mujer
## [31] Mujer Mujer Mujer Mujer Mujer Mujer Mujer Mujer Hombre Mujer
## [41] Hombre Mujer Mujer Mujer Mujer Mujer Mujer Mujer Mujer Hombre
## [51] Mujer Mujer Mujer Mujer Hombre Mujer Hombre Hombre Mujer Mujer
## [61] Mujer Mujer Mujer Mujer Mujer Hombre Hombre Mujer Hombre Mujer
## [71] Hombre Mujer Hombre Hombre Hombre Mujer Mujer Mujer Mujer Hombre
## [81] Hombre Mujer Hombre Mujer Mujer Mujer Mujer Mujer Mujer Mujer
## [91] Mujer Mujer Mujer Mujer Mujer Mujer Hombre Mujer Mujer Hombre
## Levels: Hombre Mujer
plot(sexo)
p=1/6
# La probabilidad de tener x aciertos en 6 lanzamientos
dado=rbinom(10000,6,p)
head(dado)
## [1] 0 1 0 2 2 1
tail(dado)
## [1] 0 2 2 2 3 3
hist(dado)
#f1 es la función de densidad para cada valor posible de X, si esta sigue una distribución normal de media 0 y varianza 1
f1=dnorm ( x,0, 1 )
f1
## [1] 6.075883e-09 1.246602e-08 2.520507e-08 5.050535e-08 9.915803e-08
## [6] 1.918491e-07 3.657912e-07 6.873030e-07 1.279056e-06 2.333645e-06
## [11] 4.195867e-06 7.434472e-06 1.304050e-05 2.243639e-05 3.804111e-05
## [16] 6.356163e-05 1.046594e-04 1.704959e-04 2.726012e-04 4.295197e-04
## [21] 6.669293e-04 1.020512e-03 1.543994e-03 2.294109e-03 3.359111e-03
## [26] 4.847033e-03 6.912039e-03 9.684748e-03 1.337248e-02 1.819604e-02
## [31] 2.439965e-02 3.231510e-02 4.207679e-02 5.399097e-02 6.827176e-02
## [36] 8.507513e-02 1.046445e-01 1.266217e-01 1.509878e-01 1.774258e-01
## [41] 2.054627e-01 2.347138e-01 2.639280e-01 2.924649e-01 3.193770e-01
## [46] 3.438839e-01 3.646466e-01 3.810430e-01 3.923894e-01 3.982007e-01
## [51] 3.982007e-01 3.923894e-01 3.810430e-01 3.646466e-01 3.438839e-01
## [56] 3.193770e-01 2.924649e-01 2.639280e-01 2.347138e-01 2.054627e-01
## [61] 1.774258e-01 1.509878e-01 1.266217e-01 1.046445e-01 8.507513e-02
## [66] 6.827176e-02 5.399097e-02 4.207679e-02 3.231510e-02 2.439965e-02
## [71] 1.819604e-02 1.337248e-02 9.684748e-03 6.912039e-03 4.847033e-03
## [76] 3.359111e-03 2.294109e-03 1.543994e-03 1.020512e-03 6.669293e-04
## [81] 4.295197e-04 2.726012e-04 1.704959e-04 1.046594e-04 6.356163e-05
## [86] 3.804111e-05 2.243639e-05 1.304050e-05 7.434472e-06 4.195867e-06
## [91] 2.333645e-06 1.279056e-06 6.873030e-07 3.657912e-07 1.918491e-07
## [96] 9.915803e-08 5.050535e-08 2.520507e-08 1.246602e-08 6.075883e-09
# Gráfica de la función f1
barplot(f1)
Figure 5.1: Barplot f1
** Contraste entre varias curvas normales con diferentes parámetros de media y desvío estándar **
x <- round(seq ( -6, 6, len=100 ),3)
y <- cbind ( round(f1,3), round(dnorm ( x, -2, 1 ),3), round(dnorm (x, 0, 2 ),3), round(dnorm ( x, 0, .5),3), round(dnorm ( x, 2, .3 ),3),round(dnorm ( x, -.5, 3 ),3) )
valores=data.frame(x,y)
head(valores)
## x X1 X2 X3 X4 X5 X6
## 1 -6.000 0 0.000 0.002 0 0 0.025
## 2 -5.879 0 0.000 0.003 0 0 0.027
## 3 -5.758 0 0.000 0.003 0 0 0.029
## 4 -5.636 0 0.001 0.004 0 0 0.031
## 5 -5.515 0 0.001 0.004 0 0 0.033
## 6 -5.394 0 0.001 0.005 0 0 0.035
matplot ( x, y, type="l", col=c(1,2,3,4,5,6), las = 1 )
legend ( -6, 1.3, expression(paste(mu==0," ; ", sigma==1),
paste(mu==-2," ; ", sigma==1),
paste(mu==0," ; ", sigma==2),
paste(mu==0," ; ", sigma==0.5),
paste(mu==2," ; ", sigma==0.3),
paste(mu==-0.5," ; ", sigma==3)),
lty = 1:6, cex = 0.7, col=c(1,2,3,4,5,6))
Figure 5.2: matplot dnomr
# la probabilidad de que una variable aleatoria normal estándar tenga un valor menor a 1.5
pbb=pnorm(1.5,mean=0,sd=1)
pbb
## [1] 0.9331928
# la probabilidad de que una variable aleatoria normal de media 20 y desvío estándar 2 tenga un valor mayor a 18 y menor 21
area=pnorm(21,20,2)-pnorm(18,20,2)
area
## [1] 0.5328072
** La tabla de la distribución normal **
q=round(seq(-4,4,length=100),3)
q
## [1] -4.000 -3.919 -3.838 -3.758 -3.677 -3.596 -3.515 -3.434 -3.354 -3.273
## [11] -3.192 -3.111 -3.030 -2.949 -2.869 -2.788 -2.707 -2.626 -2.545 -2.465
## [21] -2.384 -2.303 -2.222 -2.141 -2.061 -1.980 -1.899 -1.818 -1.737 -1.657
## [31] -1.576 -1.495 -1.414 -1.333 -1.253 -1.172 -1.091 -1.010 -0.929 -0.848
## [41] -0.768 -0.687 -0.606 -0.525 -0.444 -0.364 -0.283 -0.202 -0.121 -0.040
## [51] 0.040 0.121 0.202 0.283 0.364 0.444 0.525 0.606 0.687 0.768
## [61] 0.848 0.929 1.010 1.091 1.172 1.253 1.333 1.414 1.495 1.576
## [71] 1.657 1.737 1.818 1.899 1.980 2.061 2.141 2.222 2.303 2.384
## [81] 2.465 2.545 2.626 2.707 2.788 2.869 2.949 3.030 3.111 3.192
## [91] 3.273 3.354 3.434 3.515 3.596 3.677 3.758 3.838 3.919 4.000
pbb1=round(pnorm(q,0,1),3)
pbb1
## [1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001
## [13] 0.001 0.002 0.002 0.003 0.003 0.004 0.005 0.007 0.009 0.011 0.013 0.016
## [25] 0.020 0.024 0.029 0.035 0.041 0.049 0.058 0.067 0.079 0.091 0.105 0.121
## [37] 0.138 0.156 0.176 0.198 0.221 0.246 0.272 0.300 0.329 0.358 0.389 0.420
## [49] 0.452 0.484 0.516 0.548 0.580 0.611 0.642 0.671 0.700 0.728 0.754 0.779
## [61] 0.802 0.824 0.844 0.862 0.879 0.895 0.909 0.921 0.933 0.942 0.951 0.959
## [73] 0.965 0.971 0.976 0.980 0.984 0.987 0.989 0.991 0.993 0.995 0.996 0.997
## [85] 0.997 0.998 0.998 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000
## [97] 1.000 1.000 1.000 1.000
plot(pbb1)
#Funcion de densidad
dens1=dnorm(q,0,1)
dens1
## [1] 0.0001338302 0.0001844340 0.0002525098 0.0003421640 0.0004623895
## [6] 0.0006207721 0.0008279556 0.0010970653 0.0014393027 0.0018824088
## [11] 0.0024458305 0.0031571075 0.0040485822 0.0051578315 0.0065093281
## [16] 0.0081853400 0.0102255782 0.0126908181 0.0156473918 0.0191194138
## [21] 0.0232682262 0.0281321274 0.0337903327 0.0403211541 0.0477011853
## [26] 0.0561831419 0.0657405705 0.0764207874 0.0882551672 0.1010880830
## [31] 0.1152298404 0.1304909983 0.1468069922 0.1640829751 0.1819646151
## [36] 0.2007428520 0.2200107141 0.2395510977 0.2591212881 0.2784573054
## [41] 0.2970512687 0.3150817868 0.3320211746 0.3475832643 0.3614951936
## [46] 0.3733695746 0.3832824734 0.3908855264 0.3960324870 0.3986232542
## [51] 0.3986232542 0.3960324870 0.3908855264 0.3832824734 0.3733695746
## [56] 0.3614951936 0.3475832643 0.3320211746 0.3150817868 0.2970512687
## [61] 0.2784573054 0.2591212881 0.2395510977 0.2200107141 0.2007428520
## [66] 0.1819646151 0.1640829751 0.1468069922 0.1304909983 0.1152298404
## [71] 0.1010880830 0.0882551672 0.0764207874 0.0657405705 0.0561831419
## [76] 0.0477011853 0.0403211541 0.0337903327 0.0281321274 0.0232682262
## [81] 0.0191194138 0.0156473918 0.0126908181 0.0102255782 0.0081853400
## [86] 0.0065093281 0.0051578315 0.0040485822 0.0031571075 0.0024458305
## [91] 0.0018824088 0.0014393027 0.0010970653 0.0008279556 0.0006207721
## [96] 0.0004623895 0.0003421640 0.0002525098 0.0001844340 0.0001338302
tablaZ=data.frame(q,pbb1,dens1)
tablaZ
## q pbb1 dens1
## 1 -4.000 0.000 0.0001338302
## 2 -3.919 0.000 0.0001844340
## 3 -3.838 0.000 0.0002525098
## 4 -3.758 0.000 0.0003421640
## 5 -3.677 0.000 0.0004623895
## 6 -3.596 0.000 0.0006207721
## 7 -3.515 0.000 0.0008279556
## 8 -3.434 0.000 0.0010970653
## 9 -3.354 0.000 0.0014393027
## 10 -3.273 0.001 0.0018824088
## 11 -3.192 0.001 0.0024458305
## 12 -3.111 0.001 0.0031571075
## 13 -3.030 0.001 0.0040485822
## 14 -2.949 0.002 0.0051578315
## 15 -2.869 0.002 0.0065093281
## 16 -2.788 0.003 0.0081853400
## 17 -2.707 0.003 0.0102255782
## 18 -2.626 0.004 0.0126908181
## 19 -2.545 0.005 0.0156473918
## 20 -2.465 0.007 0.0191194138
## 21 -2.384 0.009 0.0232682262
## 22 -2.303 0.011 0.0281321274
## 23 -2.222 0.013 0.0337903327
## 24 -2.141 0.016 0.0403211541
## 25 -2.061 0.020 0.0477011853
## 26 -1.980 0.024 0.0561831419
## 27 -1.899 0.029 0.0657405705
## 28 -1.818 0.035 0.0764207874
## 29 -1.737 0.041 0.0882551672
## 30 -1.657 0.049 0.1010880830
## 31 -1.576 0.058 0.1152298404
## 32 -1.495 0.067 0.1304909983
## 33 -1.414 0.079 0.1468069922
## 34 -1.333 0.091 0.1640829751
## 35 -1.253 0.105 0.1819646151
## 36 -1.172 0.121 0.2007428520
## 37 -1.091 0.138 0.2200107141
## 38 -1.010 0.156 0.2395510977
## 39 -0.929 0.176 0.2591212881
## 40 -0.848 0.198 0.2784573054
## 41 -0.768 0.221 0.2970512687
## 42 -0.687 0.246 0.3150817868
## 43 -0.606 0.272 0.3320211746
## 44 -0.525 0.300 0.3475832643
## 45 -0.444 0.329 0.3614951936
## 46 -0.364 0.358 0.3733695746
## 47 -0.283 0.389 0.3832824734
## 48 -0.202 0.420 0.3908855264
## 49 -0.121 0.452 0.3960324870
## 50 -0.040 0.484 0.3986232542
## 51 0.040 0.516 0.3986232542
## 52 0.121 0.548 0.3960324870
## 53 0.202 0.580 0.3908855264
## 54 0.283 0.611 0.3832824734
## 55 0.364 0.642 0.3733695746
## 56 0.444 0.671 0.3614951936
## 57 0.525 0.700 0.3475832643
## 58 0.606 0.728 0.3320211746
## 59 0.687 0.754 0.3150817868
## 60 0.768 0.779 0.2970512687
## 61 0.848 0.802 0.2784573054
## 62 0.929 0.824 0.2591212881
## 63 1.010 0.844 0.2395510977
## 64 1.091 0.862 0.2200107141
## 65 1.172 0.879 0.2007428520
## 66 1.253 0.895 0.1819646151
## 67 1.333 0.909 0.1640829751
## 68 1.414 0.921 0.1468069922
## 69 1.495 0.933 0.1304909983
## 70 1.576 0.942 0.1152298404
## 71 1.657 0.951 0.1010880830
## 72 1.737 0.959 0.0882551672
## 73 1.818 0.965 0.0764207874
## 74 1.899 0.971 0.0657405705
## 75 1.980 0.976 0.0561831419
## 76 2.061 0.980 0.0477011853
## 77 2.141 0.984 0.0403211541
## 78 2.222 0.987 0.0337903327
## 79 2.303 0.989 0.0281321274
## 80 2.384 0.991 0.0232682262
## 81 2.465 0.993 0.0191194138
## 82 2.545 0.995 0.0156473918
## 83 2.626 0.996 0.0126908181
## 84 2.707 0.997 0.0102255782
## 85 2.788 0.997 0.0081853400
## 86 2.869 0.998 0.0065093281
## 87 2.949 0.998 0.0051578315
## 88 3.030 0.999 0.0040485822
## 89 3.111 0.999 0.0031571075
## 90 3.192 0.999 0.0024458305
## 91 3.273 0.999 0.0018824088
## 92 3.354 1.000 0.0014393027
## 93 3.434 1.000 0.0010970653
## 94 3.515 1.000 0.0008279556
## 95 3.596 1.000 0.0006207721
## 96 3.677 1.000 0.0004623895
## 97 3.758 1.000 0.0003421640
## 98 3.838 1.000 0.0002525098
## 99 3.919 1.000 0.0001844340
## 100 4.000 1.000 0.0001338302
curvagauss=plot(data.frame(q,dens1))
sexo=rbinom(2850,1,0.8)
head(sexo)
## [1] 1 1 1 1 1 1
tail(sexo)
## [1] 1 1 1 0 1 1
summary(sexo)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 1.0000 1.0000 0.7986 1.0000 1.0000
sexo=factor(sexo, levels = c(0,1),labels = c("Hombre", "Mujer"))
plot(sexo)
Sean \(X1, X2,...,Xn\) \(n\) variables aleatorias IID con una distribución de probabilidad no especificada y que tienen una media \(\mu\) y una varianza \(\sigma^2\) finita. El promedio muestral \(\bar{X} =(X1+X2+...+Xn)/n\) tiene una distribución con media y varianza \(\sigma^2/n\) que tiende hacia una distribución normal conforme n tiende a \(\infty\). En otras palabras, la variable aleatoria \((\bar{X}-\mu)/(\sigma/\sqrt{n})\) tiene como límite una distribución normal estándar
La siguiente simulación te muestra como funciona el teorema central del límite. En primer lugar, simula 300 muestra de tamaño 5 de una variable aleatoria con distribución uniforme de parámetros a=0 y b=1.
u5<-sapply(1:300, function(x){mean(sample(runif(10000),5,rep=F))})
round(u5, 3)
## [1] 0.426 0.550 0.543 0.555 0.528 0.210 0.647 0.773 0.573 0.517 0.558 0.664
## [13] 0.501 0.573 0.498 0.643 0.509 0.498 0.700 0.582 0.408 0.670 0.738 0.470
## [25] 0.595 0.369 0.659 0.557 0.590 0.879 0.610 0.667 0.721 0.351 0.573 0.499
## [37] 0.436 0.480 0.516 0.610 0.634 0.481 0.608 0.633 0.474 0.354 0.505 0.586
## [49] 0.454 0.323 0.709 0.494 0.472 0.476 0.426 0.491 0.716 0.573 0.315 0.480
## [61] 0.434 0.687 0.292 0.231 0.452 0.643 0.204 0.738 0.469 0.412 0.498 0.498
## [73] 0.724 0.403 0.668 0.148 0.535 0.496 0.447 0.620 0.488 0.640 0.606 0.623
## [85] 0.346 0.351 0.680 0.691 0.719 0.548 0.495 0.352 0.584 0.493 0.381 0.638
## [97] 0.552 0.408 0.582 0.426 0.524 0.513 0.279 0.207 0.765 0.607 0.631 0.379
## [109] 0.721 0.401 0.501 0.638 0.322 0.382 0.521 0.640 0.339 0.433 0.643 0.328
## [121] 0.363 0.351 0.485 0.267 0.433 0.430 0.587 0.298 0.395 0.441 0.768 0.683
## [133] 0.354 0.278 0.443 0.612 0.464 0.433 0.514 0.583 0.305 0.794 0.759 0.447
## [145] 0.553 0.481 0.431 0.573 0.394 0.698 0.340 0.582 0.536 0.532 0.612 0.559
## [157] 0.446 0.722 0.561 0.662 0.565 0.579 0.309 0.493 0.366 0.487 0.411 0.414
## [169] 0.378 0.441 0.292 0.366 0.483 0.478 0.384 0.658 0.435 0.311 0.455 0.359
## [181] 0.677 0.386 0.439 0.658 0.351 0.311 0.230 0.500 0.850 0.628 0.512 0.588
## [193] 0.436 0.543 0.523 0.409 0.679 0.333 0.585 0.519 0.631 0.321 0.636 0.338
## [205] 0.463 0.715 0.684 0.505 0.511 0.677 0.579 0.489 0.534 0.590 0.466 0.657
## [217] 0.518 0.508 0.178 0.566 0.358 0.526 0.342 0.425 0.755 0.432 0.450 0.356
## [229] 0.648 0.418 0.465 0.526 0.467 0.363 0.403 0.551 0.339 0.699 0.661 0.523
## [241] 0.578 0.626 0.524 0.407 0.484 0.385 0.477 0.327 0.544 0.526 0.538 0.628
## [253] 0.549 0.385 0.486 0.495 0.346 0.474 0.666 0.304 0.554 0.607 0.545 0.546
## [265] 0.669 0.667 0.431 0.594 0.528 0.440 0.582 0.677 0.521 0.639 0.361 0.624
## [277] 0.681 0.523 0.434 0.669 0.472 0.769 0.301 0.540 0.746 0.527 0.716 0.202
## [289] 0.579 0.648 0.364 0.517 0.370 0.230 0.555 0.427 0.306 0.441 0.327 0.632
En primer lugar, simula 300 muestra de tamaño 100 de una variable aleatoria con distribución uniforme de parámetros a=0 y b=1.
u100<-sapply(1:300, function(x){mean(sample(runif(10000),100,rep=F))})
round(u100, 3)
## [1] 0.503 0.522 0.512 0.528 0.477 0.541 0.505 0.528 0.485 0.476 0.445 0.455
## [13] 0.567 0.533 0.498 0.493 0.534 0.521 0.441 0.444 0.534 0.509 0.501 0.499
## [25] 0.495 0.457 0.554 0.505 0.530 0.553 0.495 0.532 0.477 0.534 0.515 0.496
## [37] 0.506 0.469 0.448 0.588 0.513 0.494 0.485 0.466 0.427 0.504 0.511 0.516
## [49] 0.523 0.476 0.532 0.524 0.514 0.488 0.499 0.456 0.540 0.465 0.473 0.510
## [61] 0.490 0.498 0.517 0.516 0.541 0.456 0.505 0.454 0.545 0.494 0.516 0.491
## [73] 0.506 0.480 0.507 0.470 0.530 0.525 0.508 0.482 0.554 0.497 0.499 0.445
## [85] 0.495 0.498 0.515 0.465 0.490 0.528 0.534 0.545 0.469 0.443 0.502 0.500
## [97] 0.481 0.524 0.543 0.522 0.530 0.499 0.481 0.480 0.512 0.492 0.502 0.513
## [109] 0.510 0.487 0.508 0.488 0.529 0.440 0.507 0.544 0.476 0.444 0.469 0.510
## [121] 0.438 0.537 0.522 0.561 0.487 0.494 0.477 0.541 0.488 0.493 0.532 0.491
## [133] 0.544 0.541 0.511 0.529 0.493 0.477 0.485 0.548 0.554 0.499 0.468 0.468
## [145] 0.538 0.507 0.504 0.529 0.479 0.520 0.489 0.513 0.483 0.493 0.452 0.519
## [157] 0.457 0.515 0.470 0.505 0.539 0.485 0.458 0.500 0.508 0.513 0.515 0.492
## [169] 0.493 0.493 0.456 0.481 0.541 0.509 0.513 0.523 0.524 0.501 0.518 0.505
## [181] 0.535 0.485 0.482 0.499 0.463 0.492 0.505 0.501 0.431 0.514 0.569 0.502
## [193] 0.495 0.554 0.444 0.491 0.489 0.508 0.541 0.495 0.480 0.473 0.484 0.490
## [205] 0.552 0.532 0.474 0.475 0.514 0.486 0.449 0.543 0.463 0.502 0.546 0.510
## [217] 0.486 0.506 0.484 0.498 0.483 0.469 0.444 0.527 0.520 0.445 0.558 0.517
## [229] 0.466 0.461 0.542 0.538 0.454 0.448 0.466 0.549 0.525 0.471 0.498 0.494
## [241] 0.526 0.495 0.443 0.512 0.553 0.498 0.510 0.537 0.550 0.513 0.544 0.518
## [253] 0.569 0.459 0.493 0.483 0.478 0.513 0.519 0.507 0.496 0.477 0.508 0.530
## [265] 0.516 0.482 0.510 0.487 0.548 0.451 0.493 0.457 0.527 0.517 0.520 0.466
## [277] 0.489 0.519 0.537 0.509 0.480 0.529 0.528 0.489 0.472 0.481 0.516 0.546
## [289] 0.456 0.545 0.530 0.494 0.465 0.449 0.492 0.469 0.520 0.508 0.527 0.479
Grafíca ambos resultados con dos histogramas para compararlos.
par(mfrow=c(1,2))
hist(u5,col = "lightblue", breaks=20, freq = TRUE, xlim=c(0,1))
hist(u100,col = "blue", breaks=20, freq = TRUE, xlim=c(0,1))
Calcula los valores estandarizados para cada media y grafica un histograma para verificar que la distribución de las medias muestrales estandarizadas es efectivamente normal.
#media y varianza de la distribución uniforme con parámetros a=0 y b=1
n=100
a=0
b=1
munif=(a+b)/2
munif
## [1] 0.5
varunif=(b-a)^2/12
varunif
## [1] 0.08333333
u100z=(u100-munif)/(sqrt(varunif)/sqrt(n))
hist(u100z,col = "green", breaks=10, freq = F, xlim=c(-4,4))
lines(seq(-4, 4, by=.1), dnorm(seq(-4, 4, by=.1),0, 1), col="blue")
Realiza la mísma simulación con una variable aleatoria con distribución Poisson de parámetro igual a 2.
p5<-sapply(1:300, function(x){mean(sample(rpois(10000,2),5,rep=F))})
p5
## [1] 1.6 0.6 1.2 1.6 2.4 2.4 2.4 1.8 1.8 1.2 2.4 2.6 1.6 1.4 2.0 2.0 1.6 1.8
## [19] 2.0 2.4 2.0 2.0 1.2 1.6 2.2 2.4 2.2 2.6 3.4 3.2 1.4 2.6 1.6 2.6 2.8 2.2
## [37] 3.0 1.4 2.0 2.8 1.2 1.2 1.8 2.4 1.6 2.2 2.4 2.8 2.6 1.8 2.4 1.8 2.0 2.8
## [55] 2.2 2.2 1.2 0.8 1.6 2.2 2.4 2.6 2.0 3.0 1.6 1.4 2.0 3.2 2.4 2.8 3.0 2.6
## [73] 1.8 1.4 3.6 2.6 2.6 2.4 3.8 3.2 2.0 2.0 2.0 3.2 1.8 3.2 1.8 1.4 1.6 1.8
## [91] 1.8 2.0 2.2 1.2 2.4 3.0 3.0 2.2 2.2 1.8 1.8 1.6 1.6 2.2 2.0 2.8 1.4 0.4
## [109] 2.6 1.2 1.4 2.6 2.4 1.8 1.8 1.8 1.8 1.0 2.2 2.2 2.6 2.4 2.4 1.2 1.2 1.8
## [127] 2.2 2.2 1.8 1.8 2.2 1.8 3.4 2.4 1.8 2.0 1.2 1.8 2.6 2.6 2.0 1.6 2.0 2.2
## [145] 2.2 4.2 2.0 1.0 2.2 1.2 1.8 2.2 2.2 2.8 2.4 2.6 2.0 2.4 1.2 2.0 2.0 2.4
## [163] 1.6 1.4 1.2 1.4 1.8 0.6 1.8 1.0 2.4 2.2 1.0 1.6 2.2 1.6 2.0 1.6 1.8 2.6
## [181] 2.0 1.8 1.0 1.6 0.4 2.2 2.4 1.6 2.4 1.4 2.6 1.8 2.0 2.0 2.2 2.4 1.8 2.4
## [199] 2.4 2.2 2.4 1.6 1.8 2.0 1.8 2.6 2.4 1.8 2.4 1.6 2.0 1.6 2.2 1.4 2.6 1.2
## [217] 1.4 2.4 3.6 1.2 1.8 1.8 1.8 1.0 2.2 1.6 2.0 1.8 2.4 1.4 2.6 1.6 2.0 1.4
## [235] 2.2 1.6 1.0 2.2 2.2 2.6 1.6 2.4 2.2 2.2 2.0 1.0 1.2 1.8 1.4 1.6 2.6 1.6
## [253] 2.0 2.0 1.4 2.6 2.2 1.4 1.0 3.8 2.4 2.4 3.6 2.8 2.8 1.4 0.8 2.6 2.0 2.6
## [271] 1.8 1.6 2.2 3.4 2.0 2.6 2.2 2.4 2.2 3.8 1.6 2.0 2.0 2.2 1.4 1.2 2.0 2.2
## [289] 1.8 1.8 3.0 1.4 2.0 2.0 2.4 2.6 2.4 2.0 1.8 2.2
p100<-sapply(1:300, function(x){mean(sample(rpois(10000,2),100,rep=F))})
p100
## [1] 2.08 1.89 1.91 1.96 2.06 1.89 2.11 2.11 1.95 2.12 1.84 1.92 1.90 1.99 1.81
## [16] 2.09 1.73 1.80 1.96 2.00 2.31 2.15 1.81 2.03 1.92 1.94 2.06 1.88 1.85 1.97
## [31] 2.21 1.94 2.12 1.89 1.97 2.04 1.83 2.08 2.00 2.17 2.13 1.81 2.15 2.07 1.77
## [46] 1.81 1.80 2.26 2.15 1.95 1.95 1.77 2.20 2.07 2.01 1.80 1.94 2.01 2.05 2.06
## [61] 2.08 1.99 1.78 2.24 1.96 2.07 1.98 2.05 1.92 1.99 1.98 1.99 1.79 1.92 1.75
## [76] 2.13 1.95 2.01 1.68 2.15 2.29 1.85 2.00 2.02 2.17 1.98 2.00 2.29 2.00 1.92
## [91] 2.15 1.74 2.09 1.76 2.07 1.96 2.01 2.14 1.94 1.92 2.20 1.98 1.91 2.17 2.23
## [106] 1.92 2.05 2.02 1.74 2.10 2.08 2.31 2.01 1.96 2.01 1.85 2.19 1.99 2.18 1.82
## [121] 2.15 2.12 1.78 2.12 1.88 2.15 1.91 1.82 1.97 2.25 1.94 2.02 2.10 1.82 2.03
## [136] 1.88 2.08 2.07 2.06 2.01 1.78 1.89 2.08 2.02 2.13 1.90 2.24 2.11 2.15 2.17
## [151] 1.94 1.88 2.07 2.08 1.86 2.08 2.10 2.01 1.97 2.00 1.90 1.98 1.99 2.05 2.02
## [166] 1.78 1.97 1.88 2.03 2.05 1.94 2.14 1.91 2.08 2.21 1.83 2.07 2.04 1.84 1.89
## [181] 2.04 2.01 1.91 1.89 1.92 1.92 2.01 1.98 2.03 1.79 2.06 1.99 2.19 2.16 2.10
## [196] 2.16 1.96 2.36 2.05 1.95 1.75 1.78 2.03 1.92 2.22 2.00 1.91 2.01 1.86 2.12
## [211] 1.88 2.05 1.93 1.99 2.13 1.93 1.81 1.79 2.10 1.73 2.07 2.01 1.62 2.19 1.97
## [226] 2.10 1.88 2.01 2.01 1.72 1.96 1.85 1.98 1.88 2.35 1.93 2.10 1.94 1.69 2.08
## [241] 1.92 2.22 2.27 1.98 2.15 1.94 1.96 1.95 1.98 2.20 1.72 1.91 1.99 1.88 2.00
## [256] 2.27 1.95 2.07 1.92 1.95 2.03 1.88 2.15 2.07 2.11 1.87 2.05 2.11 1.86 2.02
## [271] 2.08 1.79 2.04 2.02 2.01 2.28 2.05 1.80 1.85 1.94 2.05 1.99 1.84 2.22 2.03
## [286] 2.05 1.86 1.99 2.18 2.09 2.11 1.97 1.79 2.40 2.31 2.07 1.88 2.00 1.75 1.87
par(mfrow=c(1,2))
hist(p5,col = "lightgreen", breaks=20, freq = TRUE, xlim=c(0,6))
hist(p100,col = "green", breaks=20, freq = TRUE, xlim=c(0,6))
Calcula los valores estandarizados para cada media y grafica un histograma para verificar que la distribución es efectivamente normal estandar.
p100z=(p100-2)/(sqrt(2)/sqrt(100))
hist(p100z,col = "green", breaks=10, freq = F, xlim=c(-4,4))
lines(seq(-4, 4, by=.1), dnorm(seq(-4, 4, by=.1),0, 1), col="blue")
\[\overline{X} \sim Nor \left( \mu, \frac{\sigma^2}{n}\right)\] Ejemplo
Para una población con distribución normal con media igual a 4.5 y varianza igual a 2. Se realiza un muestreo aleatorio simple de tamaño 35. ¿Cuál es la probabilidad de que la media muestral sea al menos igual a 5?
mu = 4.5
sigma = 2
n = 35
sigma_mu = sigma/n
pnorm(5, mean = mu, sd = sqrt(sigma_mu), lower.tail = F)
## [1] 0.01823492
# o también
pnorm((5-4.5)/(sqrt(2/35)),lower.tail = F) #Normal estándar
## [1] 0.01823492
#Gráfico
library(RcmdrMisc)
x1 <- seq(3.5, 5.5, length.out=1000)
plotDistr(x1, dnorm(x1, mean=mu, sd=sqrt(sigma_mu)), cdf=FALSE, xlab="x", ylab="Densidad",
main="", regions=list(c(5, 5.5)), legend.pos=F, bty="n")
\[\frac{\overline{X}-\mu}{\hat{S}/\sqrt{n}} \sim t_{n-1}\] Ejemplo
Supongamos el ejemplo anterior pero donde la varianza poblacional es desconocida. Sin embargo, se conoce la varianza muestral \(\hat{s}\) que es igual a 2.25.
mu = 4.5
s2 = 2.25
n = 35
s2_mu = s2/n
pt((5-mu)/sqrt(s2_mu), df = 34,lower.tail = F)
## [1] 0.02839295
#Gráfico
x2 <- seq(-3.5, 3.5, length.out=1000)
plotDistr(x2, dt(x2, df = 34), cdf=FALSE, xlab="x", ylab="Densidad",
main="", regions=list(c(1.97, 3.5)), legend=F, bty="n")
Estudio de caso Probabilidades t student vs la normal
q<-c(seq(from=-4, to=+4, by=0.1))
q
## [1] -4.0 -3.9 -3.8 -3.7 -3.6 -3.5 -3.4 -3.3 -3.2 -3.1 -3.0 -2.9 -2.8 -2.7 -2.6
## [16] -2.5 -2.4 -2.3 -2.2 -2.1 -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1
## [31] -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4
## [46] 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
## [61] 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4
## [76] 3.5 3.6 3.7 3.8 3.9 4.0
gl<-5
pstu<-pt(q,gl)
pstu
## [1] 0.005161708 0.005704646 0.006314241 0.006999703 0.007771628 0.008642216
## [7] 0.009625522 0.010737750 0.011997588 0.013426592 0.015049624 0.016895352
## [13] 0.018996812 0.021392032 0.024124727 0.027245050 0.030810396 0.034886235
## [19] 0.039546949 0.044876625 0.050969739 0.057931652 0.065878792 0.074938393
## [25] 0.085247616 0.096951840 0.110201940 0.125150317 0.141945528 0.160725410
## [31] 0.181608734 0.204685600 0.230007033 0.257574474 0.287330144 0.319149436
## [37] 0.352836557 0.388124521 0.424680257 0.462115071 0.500000000 0.537884929
## [43] 0.575319743 0.611875479 0.647163443 0.680850564 0.712669856 0.742425526
## [49] 0.769992967 0.795314400 0.818391266 0.839274590 0.858054472 0.874849683
## [55] 0.889798060 0.903048160 0.914752384 0.925061607 0.934121208 0.942068348
## [61] 0.949030261 0.955123375 0.960453051 0.965113765 0.969189604 0.972754950
## [67] 0.975875273 0.978607968 0.981003188 0.983104648 0.984950376 0.986573408
## [73] 0.988002412 0.989262250 0.990374478 0.991357784 0.992228372 0.993000297
## [79] 0.993685759 0.994295354 0.994838292
pnorm<-pnorm(q)
pnorm
## [1] 3.167124e-05 4.809634e-05 7.234804e-05 1.077997e-04 1.591086e-04
## [6] 2.326291e-04 3.369293e-04 4.834241e-04 6.871379e-04 9.676032e-04
## [11] 1.349898e-03 1.865813e-03 2.555130e-03 3.466974e-03 4.661188e-03
## [16] 6.209665e-03 8.197536e-03 1.072411e-02 1.390345e-02 1.786442e-02
## [21] 2.275013e-02 2.871656e-02 3.593032e-02 4.456546e-02 5.479929e-02
## [26] 6.680720e-02 8.075666e-02 9.680048e-02 1.150697e-01 1.356661e-01
## [31] 1.586553e-01 1.840601e-01 2.118554e-01 2.419637e-01 2.742531e-01
## [36] 3.085375e-01 3.445783e-01 3.820886e-01 4.207403e-01 4.601722e-01
## [41] 5.000000e-01 5.398278e-01 5.792597e-01 6.179114e-01 6.554217e-01
## [46] 6.914625e-01 7.257469e-01 7.580363e-01 7.881446e-01 8.159399e-01
## [51] 8.413447e-01 8.643339e-01 8.849303e-01 9.031995e-01 9.192433e-01
## [56] 9.331928e-01 9.452007e-01 9.554345e-01 9.640697e-01 9.712834e-01
## [61] 9.772499e-01 9.821356e-01 9.860966e-01 9.892759e-01 9.918025e-01
## [66] 9.937903e-01 9.953388e-01 9.965330e-01 9.974449e-01 9.981342e-01
## [71] 9.986501e-01 9.990324e-01 9.993129e-01 9.995166e-01 9.996631e-01
## [76] 9.997674e-01 9.998409e-01 9.998922e-01 9.999277e-01 9.999519e-01
## [81] 9.999683e-01
datos=data.frame(pstu,pnorm)
matplot (q,datos, type="l", col=c(1,2), las = 1 )
legend(-3,0.5,expression(paste(normal),paste(student)), cex = 0.7,lty = 1:2)
con muestras de tamaño 15
gl<-15
pstu15<-pt(q,gl)
pstu15
## [1] 0.0005796584 0.0007106144 0.0008716145 0.0010695443 0.0013128305
## [6] 0.0016117655 0.0019788916 0.0024294533 0.0029819242 0.0036586153
## [11] 0.0044863687 0.0054973399 0.0067298632 0.0082293928 0.0100495006
## [16] 0.0122529016 0.0149124647 0.0181121487 0.0219477876 0.0265276281
## [21] 0.0319725036 0.0384155129 0.0460010591 0.0548831055 0.0652225098
## [26] 0.0771833302 0.0909280407 0.1066116606 0.1243748937 0.1443364788
## [31] 0.1665850680 0.1911710668 0.2180989696 0.2473207913 0.2787312176
## [36] 0.3121650568 0.3473974679 0.3841472673 0.4220833885 0.4608343100
## [41] 0.5000000000 0.5391656900 0.5779166115 0.6158527327 0.6526025321
## [46] 0.6878349432 0.7212687824 0.7526792087 0.7819010304 0.8088289332
## [51] 0.8334149320 0.8556635212 0.8756251063 0.8933883394 0.9090719593
## [56] 0.9228166698 0.9347774902 0.9451168945 0.9539989409 0.9615844871
## [61] 0.9680274964 0.9734723719 0.9780522124 0.9818878513 0.9850875353
## [66] 0.9877470984 0.9899504994 0.9917706072 0.9932701368 0.9945026601
## [71] 0.9955136313 0.9963413847 0.9970180758 0.9975705467 0.9980211084
## [76] 0.9983882345 0.9986871695 0.9989304557 0.9991283855 0.9992893856
## [81] 0.9994203416
pnorm15<-pnorm(q)
pnorm15
## [1] 3.167124e-05 4.809634e-05 7.234804e-05 1.077997e-04 1.591086e-04
## [6] 2.326291e-04 3.369293e-04 4.834241e-04 6.871379e-04 9.676032e-04
## [11] 1.349898e-03 1.865813e-03 2.555130e-03 3.466974e-03 4.661188e-03
## [16] 6.209665e-03 8.197536e-03 1.072411e-02 1.390345e-02 1.786442e-02
## [21] 2.275013e-02 2.871656e-02 3.593032e-02 4.456546e-02 5.479929e-02
## [26] 6.680720e-02 8.075666e-02 9.680048e-02 1.150697e-01 1.356661e-01
## [31] 1.586553e-01 1.840601e-01 2.118554e-01 2.419637e-01 2.742531e-01
## [36] 3.085375e-01 3.445783e-01 3.820886e-01 4.207403e-01 4.601722e-01
## [41] 5.000000e-01 5.398278e-01 5.792597e-01 6.179114e-01 6.554217e-01
## [46] 6.914625e-01 7.257469e-01 7.580363e-01 7.881446e-01 8.159399e-01
## [51] 8.413447e-01 8.643339e-01 8.849303e-01 9.031995e-01 9.192433e-01
## [56] 9.331928e-01 9.452007e-01 9.554345e-01 9.640697e-01 9.712834e-01
## [61] 9.772499e-01 9.821356e-01 9.860966e-01 9.892759e-01 9.918025e-01
## [66] 9.937903e-01 9.953388e-01 9.965330e-01 9.974449e-01 9.981342e-01
## [71] 9.986501e-01 9.990324e-01 9.993129e-01 9.995166e-01 9.996631e-01
## [76] 9.997674e-01 9.998409e-01 9.998922e-01 9.999277e-01 9.999519e-01
## [81] 9.999683e-01
datos15=data.frame(pstu15,pnorm15)
matplot (q,datos15, type="l", col=c(1,2), las = 1 )
legend(-3,0.5,expression(paste(normal15),paste(student15)), cex = 0.7,lty = 1:2)
con muestras de tamaño 30
gl<-30
pstu30<-pt(q,gl)
pstu30
## [1] 0.0001909228 0.0002511250 0.0003297791 0.0004322999 0.0005655892
## [6] 0.0007384037 0.0009617981 0.0012496537 0.0016193009 0.0020922424
## [11] 0.0026949820 0.0034599551 0.0044265547 0.0056422333 0.0071636508
## [16] 0.0090578245 0.0114032185 0.0142906936 0.0178242200 0.0221212356
## [21] 0.0273125225 0.0335414620 0.0409625343 0.0497389378 0.0600392338
## [26] 0.0720329646 0.0858852546 0.1017504793 0.1197651754 0.1400404590
## [31] 0.1626543077 0.1876441434 0.2150002049 0.2446602217 0.2765058798
## [36] 0.3103615024 0.3459952583 0.3831230526 0.4214150785 0.4605048059
## [41] 0.5000000000 0.5394951941 0.5785849215 0.6168769474 0.6540047417
## [46] 0.6896384976 0.7234941202 0.7553397783 0.7849997951 0.8123558566
## [51] 0.8373456923 0.8599595410 0.8802348246 0.8982495207 0.9141147454
## [56] 0.9279670354 0.9399607662 0.9502610622 0.9590374657 0.9664585380
## [61] 0.9726874775 0.9778787644 0.9821757800 0.9857093064 0.9885967815
## [66] 0.9909421755 0.9928363492 0.9943577667 0.9955734453 0.9965400449
## [71] 0.9973050180 0.9979077576 0.9983806991 0.9987503463 0.9990382019
## [76] 0.9992615963 0.9994344108 0.9995677001 0.9996702209 0.9997488750
## [81] 0.9998090772
pnorm30<-pnorm(q)
pnorm30
## [1] 3.167124e-05 4.809634e-05 7.234804e-05 1.077997e-04 1.591086e-04
## [6] 2.326291e-04 3.369293e-04 4.834241e-04 6.871379e-04 9.676032e-04
## [11] 1.349898e-03 1.865813e-03 2.555130e-03 3.466974e-03 4.661188e-03
## [16] 6.209665e-03 8.197536e-03 1.072411e-02 1.390345e-02 1.786442e-02
## [21] 2.275013e-02 2.871656e-02 3.593032e-02 4.456546e-02 5.479929e-02
## [26] 6.680720e-02 8.075666e-02 9.680048e-02 1.150697e-01 1.356661e-01
## [31] 1.586553e-01 1.840601e-01 2.118554e-01 2.419637e-01 2.742531e-01
## [36] 3.085375e-01 3.445783e-01 3.820886e-01 4.207403e-01 4.601722e-01
## [41] 5.000000e-01 5.398278e-01 5.792597e-01 6.179114e-01 6.554217e-01
## [46] 6.914625e-01 7.257469e-01 7.580363e-01 7.881446e-01 8.159399e-01
## [51] 8.413447e-01 8.643339e-01 8.849303e-01 9.031995e-01 9.192433e-01
## [56] 9.331928e-01 9.452007e-01 9.554345e-01 9.640697e-01 9.712834e-01
## [61] 9.772499e-01 9.821356e-01 9.860966e-01 9.892759e-01 9.918025e-01
## [66] 9.937903e-01 9.953388e-01 9.965330e-01 9.974449e-01 9.981342e-01
## [71] 9.986501e-01 9.990324e-01 9.993129e-01 9.995166e-01 9.996631e-01
## [76] 9.997674e-01 9.998409e-01 9.998922e-01 9.999277e-01 9.999519e-01
## [81] 9.999683e-01
datos30=data.frame(pstu30,pnorm30)
matplot (q,datos30, type="l", col=c(1,2), las = 1 )
legend(-3,0.5,expression(paste(normal),paste(student)), cex = 0.7,lty = 1:2)
\[\overline{X}_1-\overline{X}_2 \sim Nor\left(\mu_1-\mu_2,\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}\right)\] Ejemplo
Las distribuciones de ciertas mediciones tienen distribuciones normales. Se cuentan con dos poblaciones con los siguientes valores: \(\mu_1=25\), \(\sigma_1=5\), \(\mu_2=26\) y \(\sigma_2=6\). Si se extraen muestras aleatorias de tamaños \(n_1=n_2=100\), ¿cuál es la probabilidad de que la media muestral \(\overline{x}_1\) supere a la otra media en al menos 1 unidad?
mu_1 = 25
mu_2 = 26
sigma_1 = 5
sigma_2 = 6
n_1 = 100
n_2 = 100
sigma_dmu = sqrt((sigma_1^2)/n_1+(sigma_2^2)/n_2)
pnorm(1, mean = mu_1-mu_2, sd = sigma_dmu, lower.tail = F)
## [1] 0.005222511
#Gráfico
library(RcmdrMisc)
x1 <- seq(-4, 2, length.out=1000)
plotDistr(x1, dnorm(x1, mean=mu_1-mu_2, sd=sigma_dmu), cdf=FALSE, xlab="x", ylab="Densidad",
main="", regions = list(c(1,2)), legend=F, bty="n")
\[\hat{p} \sim Nor\left(p,\frac{pq}{n}\right)\] Ejemplo
En la asignatura de Estadística I, históricamente se sabe que el porcentaje de alumnos que aprueban es del 75%. En un cierto año, se tomó una muestra aleatoria de 35 estudiantes de la asignatura. Calcula la probabilidad de que el porcetaje de aprobados sea entre 70 y 80%.
p = 0.75
n = 35
Z1 = (0.70-0.75)/sqrt(0.75*0.25/35)
Z2 = (0.80-0.75)/sqrt(0.75*0.25/35)
Probabilidad = pnorm(Z2)-pnorm(Z1)
Probabilidad
## [1] 0.5054753
#Gráfico
x1 <- seq(-3.5, 3.5, length.out=1000)
plotDistr(x1, dnorm(x1), cdf=FALSE, xlab="x", ylab="Densidad",
main="", regions=list(c(Z1, Z2)), legend=F, bty="n")
\[\hat{p}_1-\hat{p}_2 \sim Nor\left(p_1-p_2,\frac{p_1q_1}{n_1}+\frac{p_2q_2}{n_2}\right)\] Ejemplo
Sea \(p_1=0.5\), \(p_2=0.45\), \(n_1=60\) y \(n_2=50\). Calcula \(P(|\hat{p}_2-\hat{p}_1| \ge 0.1)\).
p1 = 0.5
p2 = 0.45
n1 = 60
n2 = 50
Z1 = (-0.1-(0.45-0.5))/sqrt(0.5*0.5/60+0.45*0.55/60)
Z2 = (0.1-(0.45-0.5))/sqrt(0.5*0.5/60+0.45*0.55/60)
Probabilidad = pnorm(Z1) + pnorm(Z2, lower.tail = F)
Probabilidad
## [1] 0.3412186
#Gráfico
x1 <- seq(-4, 4, length.out=1000)
plotDistr(x1, dnorm(x1), cdf=FALSE, xlab="x", ylab="Densidad",
main="", regions=list(c(-4, Z1),c(Z2,4)), legend=F, bty="n")
\[\frac{(n-1)\hat{S}^2}{\sigma^2} \sim \chi^2_{n-1}\] Ejemplo
En una población normal con varianza igual a 4. Calcula la probabilidad de que en una muestra de tamaño 20 se obtenga una varianza muestra inferior a 3.5.
sigma2 = 4
n = 20
s2 = 3.5
X2 = (n-1)*s2/sigma2
pchisq(X2, df = n-1)
## [1] 0.3847433
#Gráfico
x <- seq(0, 45, length.out=1000)
plotDistr(x, dchisq(x, df=19), cdf=FALSE, xlab="x", ylab="Densidad", main="",
regions=list(c(0, (19*3.5)/4)), legend=F, bty = "n", las = 1)
\[\frac{\hat{S}_1^2/\sigma_1^2}{\hat{S}_2^2/\sigma^2_2} \sim F_{n_1-1,n_2-1}\] Ejemplo
Sunponga dos variables aleatorias provenientes de dos poblaciones normales: \(X_1 \sim Nor(\mu_1,\sigma_1^2)\) y \(X_2 \sim Nor(\mu_2,\sigma_2^2)\). Se sabe que las varianzas poblacionales son desconocidas pero iguales. Si al seleccionar muestras aleatorios de tamaño 10 de cada población, ¿cuál es la probabilidad de que la varianza muestral de la primera sea menor a la otra?
n1 = 10
n2 = 10
pf(1, df1=n1-1, df2=n2-1)
## [1] 0.5
#Gráfico
x <- seq(0, 7, length.out=1000)
plotDistr(x, df(x, df1=n1-1, df2=n2-1), cdf=FALSE, xlab="x", ylab="Densidad",
main="", regions=list(c(0, 1)), legend=F, bty = "n", las = 1)
Un estimador \(\hat{\theta}\) es insesgado si su valor esperado coincide con el verdadero valor del parámetro poblacional \(\theta\). Es decir, si
\[E(\hat{\theta})=\theta\]
Un estimador \(\hat{\theta}_i\) es más eficiente que otro estimador \(\hat{\theta}_j\), para \(i \neq j\), si la varianza de \(\hat{\theta}_i\) es más pequeña que la de \(\hat{\theta}_j\), para todo \(j\). Es decir
\[Var(\hat{\theta}_i)<Var(\hat{\theta}_j)\]
Un estimador es consistente si se cumplen las siguientes dos propiedades:
\[\lim_{n \rightarrow \infty}E(\hat{\theta})=\theta \ \ \ \ \ y \ \ \ \ \ \lim_{n \rightarrow \infty}Var(\hat{\theta})=0\]
Un estimador (estadístico) \(t=T(X_1,X_2,...,X_n )\) es suficiente para \(\theta\) si y solo si la función de probabilidad conjunta o de densidad de probabilidad conjunta \(f(x;\theta)\) puede descomponerse de la siguiente manera:
\[f(x_1,x_2,...,x_n;\theta)=h(T(x_1,x_2,…,x_n );\theta) g(x_1,x_2,...,x_n )\] siendo \(h(T(x_1,x_2,...,x_n );\theta)=f(t;\theta)\) es una función que solo depende del parámetro \(\theta\) por medio del estadístico \(T(x_1,x_2,...,x_n )\) y que la función \(g(x_1,x_2,...,x_n )\) no le contiene al parámetro (Teorema de Factorización de Fisher-Neyman).
Un estimador \(\hat{\theta}\) del parámetro \(\theta\) es invariante si se satisface
\[g(\hat{\theta})=g(\theta)\] siempre y cuando \(g\) sea una función inyectiva.
La siguiente simulación te ayudará a entender el significado de los intérvalos de confianza.
En primer lugar tienes la simulación de una muestra compuesta por 15 valores de una variable aleatoria con distribución Poisson
lamda=10
dato<-rexp(15,1/lamda)
dato
## [1] 5.1614534 9.5633455 75.0538586 0.3422135 0.1508723 4.7158547
## [7] 9.0009859 3.6099695 16.7699972 24.2570926 5.9537338 19.7620642
## [13] 15.4679454 2.3296248 4.5656192
Dibuja el resultado con un histograma
hist(dato)
En segundo lugar, genera 100 muestras de tamaño 15 para la misma variable aleatoria
datos <- replicate(100, rexp(15,1/lamda))
datos
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1.279949 0.9621920 14.965385 0.3576768 6.4243950 33.38145964
## [2,] 20.664617 3.8963503 10.586316 1.7794314 13.6274730 13.04713616
## [3,] 37.335275 20.3240916 3.631626 7.7575843 13.6110094 6.56848982
## [4,] 2.506687 19.2577944 3.274185 7.0873648 30.8057620 1.88863806
## [5,] 12.332487 16.6739013 2.132046 1.8363797 1.5546419 13.91100287
## [6,] 16.446775 0.4173680 3.831672 0.1202375 8.2719368 1.42103433
## [7,] 9.892586 23.0402942 4.146887 0.5692578 25.0378756 11.11157029
## [8,] 3.140573 18.5182914 2.388018 29.0299728 12.8275104 14.71660608
## [9,] 0.239905 4.1199824 6.119115 18.8467519 56.6094778 4.06874218
## [10,] 5.655234 5.6190086 4.813198 19.0094886 10.7353563 2.00662541
## [11,] 4.976103 13.0504539 18.660895 1.7364857 12.2183828 5.19736374
## [12,] 21.875267 3.9441377 14.754039 4.2555544 4.4806689 17.63013506
## [13,] 16.402013 0.7122198 2.945745 17.7901360 1.4983412 0.09035749
## [14,] 2.248042 20.7285104 4.237940 16.3324675 11.1683480 0.34113018
## [15,] 8.880109 25.5015491 38.792849 21.1878117 0.5309647 15.26458846
## [,7] [,8] [,9] [,10] [,11] [,12] [,13]
## [1,] 4.260422 13.408749 30.290629 25.268647 2.0670378 9.8983442 2.1168314
## [2,] 14.594610 18.194649 11.888199 2.215443 5.8778667 0.2451145 20.9813110
## [3,] 5.690279 17.751910 9.721065 1.979659 13.0957828 9.4001895 3.5327139
## [4,] 1.596834 8.628015 2.810085 2.558440 0.1968391 34.6375430 41.4115759
## [5,] 5.298943 3.221644 11.502844 16.332648 11.5056609 13.9774492 5.9839329
## [6,] 6.815005 5.965857 15.567891 4.425531 16.5496774 10.7827385 12.9849895
## [7,] 7.995013 6.070374 43.255228 9.955594 26.6107045 5.0969105 13.4049344
## [8,] 6.554660 24.205088 2.323160 32.738582 0.3507055 6.2613844 2.2476106
## [9,] 7.565638 9.808541 14.365567 5.707839 3.4976493 12.7913250 32.3459291
## [10,] 16.980402 17.399511 4.736825 16.957633 0.4604550 15.3017253 8.6737533
## [11,] 10.099569 14.535617 5.273393 19.911943 22.9637811 13.3858422 0.3557769
## [12,] 42.458472 42.258913 1.104715 7.815240 6.4710846 5.7759193 8.4335063
## [13,] 16.673368 11.750396 5.383153 5.275842 5.1780536 25.0370612 3.9346589
## [14,] 12.702967 3.172033 9.758532 3.415572 2.5734974 7.9537094 12.0970245
## [15,] 20.061113 19.415941 3.327441 3.090536 17.0232529 3.8532761 9.3531568
## [,14] [,15] [,16] [,17] [,18] [,19]
## [1,] 1.8366825 4.235287 8.1396876 0.9208219 25.2552850 4.6419461
## [2,] 13.6010998 6.847904 16.5095368 0.5112874 1.7210704 3.3506821
## [3,] 23.0759511 9.390885 105.3752753 13.1275378 3.6095417 0.2390216
## [4,] 4.5494114 3.249535 15.3088440 4.0167698 12.9462101 9.0643463
## [5,] 4.8018642 3.757861 0.3662359 14.1055013 7.7978410 6.0040833
## [6,] 25.1449085 1.980405 18.9475823 1.5037633 2.2987893 8.5860798
## [7,] 5.5945756 3.917099 6.5242900 4.1489732 7.3884750 6.1743357
## [8,] 0.5250029 5.834956 11.8142602 0.2153933 31.6007588 0.1002196
## [9,] 39.3115053 10.122202 9.0170460 4.7218450 0.8276156 2.9377980
## [10,] 45.1540299 3.683468 5.6624509 10.6875721 3.1696905 1.0297383
## [11,] 1.2732607 12.759983 7.8024820 0.5868130 17.0573309 3.8325487
## [12,] 1.8368333 9.802670 17.8231090 5.0331376 1.6151240 40.8423672
## [13,] 12.9588004 4.113783 0.1028322 5.6686545 6.1832928 3.7567146
## [14,] 3.1366884 28.480919 5.5506747 7.0131791 3.9085987 12.3814197
## [15,] 0.8241346 3.006294 39.5735118 8.2886051 36.9665179 0.6518176
## [,20] [,21] [,22] [,23] [,24] [,25]
## [1,] 1.46306813 4.4577948 35.7580001 17.816084 11.6213330 0.9522905
## [2,] 4.61342267 19.8207848 3.3952501 12.857292 19.3081607 24.0573762
## [3,] 2.72713559 6.1522686 18.5147285 3.984538 12.2196784 3.3626748
## [4,] 7.54952101 18.7546867 3.2640887 2.149560 6.6730369 3.8792225
## [5,] 12.84807984 18.7236029 29.8549796 5.705127 18.0617926 0.9452518
## [6,] 0.07842243 0.2217207 2.8463022 12.042594 5.3996866 16.8062857
## [7,] 2.61791354 1.1102281 2.1677872 23.849768 9.8281302 3.9433657
## [8,] 2.72503077 1.9006880 2.5595113 4.289824 17.4033387 7.3430337
## [9,] 21.25621859 5.9267601 3.3892250 14.183231 16.3460132 0.4165172
## [10,] 8.31217743 4.0817984 14.5572810 37.739943 25.2732867 3.0804360
## [11,] 5.51252829 12.8599300 15.8554863 17.215126 0.6872738 30.1108589
## [12,] 2.33735305 20.3524164 0.5560152 9.899359 1.7190546 3.5771774
## [13,] 0.08766260 23.9422535 21.6419326 4.374736 12.5509961 15.7320531
## [14,] 16.83856154 24.0295060 4.6770107 4.841510 21.6152898 9.0449087
## [15,] 3.55833713 1.3769502 15.9417764 3.032812 22.9859778 11.6351893
## [,26] [,27] [,28] [,29] [,30] [,31]
## [1,] 7.5097153 11.6741373 1.5198863 20.0480232 27.476874 2.3936960
## [2,] 34.0681738 0.6983189 36.3138364 35.9768279 38.388616 3.5998537
## [3,] 4.6376857 0.3392410 0.1468535 16.5263611 2.781176 3.6150537
## [4,] 7.1451738 7.3304723 3.4160165 18.7034160 4.417280 8.5249345
## [5,] 23.5309252 12.1495712 4.9720877 7.8635393 21.446760 0.3223634
## [6,] 11.1008616 9.6477830 9.9812667 6.5930945 8.514729 23.1278255
## [7,] 0.7507702 10.3175577 3.9683890 3.0474039 9.609744 28.2979687
## [8,] 7.3501801 7.8811009 2.1813148 3.9501213 25.708610 9.6961663
## [9,] 11.4785533 12.8866690 0.1284733 2.5088461 3.308681 49.6483892
## [10,] 17.9605066 3.7499143 7.6972283 0.7456371 14.837136 5.8339487
## [11,] 10.9538092 8.1645700 12.9669331 8.0183189 66.723182 3.7891952
## [12,] 8.1728480 3.5948694 21.5455988 9.4553959 5.800776 1.3595054
## [13,] 3.7471451 8.0640145 1.3674520 1.4376267 10.516426 1.2267685
## [14,] 14.5181084 2.1651384 47.3473375 9.2517915 2.778803 8.5877681
## [15,] 15.2700316 6.9728246 1.3064602 28.2508695 13.353106 5.9063411
## [,32] [,33] [,34] [,35] [,36] [,37] [,38]
## [1,] 3.5412994 4.155193 8.1743118 3.778279 15.861490 2.733734 4.542934
## [2,] 0.6288459 16.125078 5.7504697 1.270861 1.117681 8.382615 11.502675
## [3,] 20.1730470 51.801908 4.8785020 17.382358 10.469129 5.273019 1.299322
## [4,] 8.0529232 18.403878 14.1418237 5.682833 14.402729 21.084451 30.631195
## [5,] 8.2859549 28.693550 14.3927710 9.990396 1.042147 9.095590 6.643254
## [6,] 13.1865308 22.236994 1.3123864 9.983566 6.638276 16.494409 31.277928
## [7,] 7.4272869 5.273109 39.5632566 5.106670 2.093041 17.051502 15.042657
## [8,] 8.3076193 17.044398 20.7240865 3.584999 7.854320 4.489943 1.556178
## [9,] 7.2134388 2.599587 0.9805233 4.937400 7.173292 19.470393 7.719233
## [10,] 1.8585689 6.191985 14.7194122 3.412162 4.916750 4.710285 1.058344
## [11,] 11.4228545 21.491982 2.2134712 16.223670 6.957704 5.479271 12.150397
## [12,] 9.4705064 6.548472 4.4883383 1.163498 1.099742 2.531927 3.939930
## [13,] 7.3008211 10.145561 5.3541729 4.131326 8.429247 8.665019 7.517012
## [14,] 8.2671425 4.386425 6.9737309 23.280934 10.306764 3.224198 2.115591
## [15,] 9.9033852 30.445768 2.6033489 0.660103 42.913981 5.510266 5.341006
## [,39] [,40] [,41] [,42] [,43] [,44]
## [1,] 5.4360385 17.068504 3.2638137 4.1719804 24.5056706 8.8926429
## [2,] 5.2451045 21.234723 2.5729102 1.4628472 1.6713246 1.1725824
## [3,] 1.5016250 7.987557 15.2189433 14.0727480 14.4337207 6.0812797
## [4,] 7.7869028 3.355223 10.6330095 15.1419888 12.7732909 21.9951432
## [5,] 12.4943576 2.167630 18.1495023 5.7788804 6.2316456 33.0968244
## [6,] 9.5043651 1.171235 59.7090875 6.5504255 18.1024917 6.4521863
## [7,] 9.0929065 1.712076 10.6186047 1.8672039 0.5703326 6.1958540
## [8,] 3.5358509 7.684350 0.8153125 1.2278144 3.6708994 0.4730159
## [9,] 8.6883462 1.879970 33.1704306 6.5733297 8.1471233 11.7649807
## [10,] 0.1314735 17.048519 5.3058601 1.1220155 5.8285243 14.3398772
## [11,] 0.3639555 13.779131 5.2674746 15.7850667 0.3924208 7.8252946
## [12,] 0.5715920 2.914127 5.2211272 7.7751526 1.8149709 2.4155618
## [13,] 14.3273153 25.781357 43.2881470 4.4560303 23.3079634 9.7983395
## [14,] 5.1629696 2.547502 20.7424722 0.2473501 2.4215411 4.6246933
## [15,] 24.3532235 12.943153 0.9342444 10.3429948 20.0003323 2.9774731
## [,45] [,46] [,47] [,48] [,49] [,50]
## [1,] 4.9281199 0.7573482 35.6939270 0.5348348 1.544408 3.3717877
## [2,] 5.7244239 26.6826328 60.7992976 4.1841586 4.236549 13.8064271
## [3,] 3.1153591 12.6540147 0.9539429 15.7141056 3.379996 0.2266271
## [4,] 3.9315124 22.9630586 13.8802046 18.4813533 53.960433 5.8064713
## [5,] 1.9367253 0.7029748 13.3854594 24.6470069 3.209259 23.4407096
## [6,] 3.7712196 6.7337522 1.0691020 16.7813327 9.577359 3.1555275
## [7,] 0.1953226 42.7797531 9.0783629 29.9957135 2.867990 29.5911907
## [8,] 4.5069691 3.2672565 12.2420935 21.3436332 13.327081 4.0444141
## [9,] 9.5198034 10.5272318 6.0353801 1.9091635 2.131277 11.2608098
## [10,] 1.2767258 7.4195024 24.3575674 6.7022581 50.978905 27.5280584
## [11,] 12.2303336 6.0293338 35.0450355 1.7125327 4.380673 1.5886528
## [12,] 4.3233199 12.3138760 19.5358244 0.2547853 7.308798 10.2540676
## [13,] 38.7193215 2.9535353 18.3721567 3.5384584 3.539026 19.3419415
## [14,] 9.0896575 8.4449605 2.0095674 11.4573704 1.401327 14.5916339
## [15,] 4.5627869 7.5208572 13.4182109 0.5690600 2.293687 14.1183605
## [,51] [,52] [,53] [,54] [,55] [,56]
## [1,] 2.150301 1.7267154 14.7538994 1.0952979 3.312868 15.20933330
## [2,] 2.989778 2.4424361 0.9686178 0.2031016 2.189398 13.12184415
## [3,] 5.793048 12.6271115 4.6925272 0.2025100 3.413870 10.85381858
## [4,] 1.217996 0.5510107 6.3720348 0.5457972 1.196309 0.42131810
## [5,] 1.235163 15.4259653 7.9878581 1.8665020 3.850705 11.04260775
## [6,] 10.215437 0.3849507 3.6150004 5.9482416 5.154733 4.39677460
## [7,] 20.932983 5.7248234 7.8632526 6.5455553 0.289346 2.19362241
## [8,] 23.638450 10.7797387 3.9905582 5.3708018 15.510546 3.98703367
## [9,] 7.949255 10.1998125 2.4897563 8.3457537 9.752522 1.79170186
## [10,] 14.375597 1.8967553 12.9942233 1.2427340 17.875812 0.36476772
## [11,] 14.185991 13.4398655 2.5481729 3.2043587 7.710956 1.44685854
## [12,] 1.980808 27.9734302 6.5281345 9.1647077 15.117401 34.74840572
## [13,] 1.803993 3.5185255 17.8989514 0.2972127 8.138858 0.03956361
## [14,] 7.338048 22.1560060 14.4392353 5.0887995 18.514908 11.57645931
## [15,] 16.780786 2.1000649 2.6414136 3.2859270 1.055660 0.79094299
## [,57] [,58] [,59] [,60] [,61] [,62]
## [1,] 0.8184087 12.261869 1.0201967 17.573908 1.1866510 6.5078967
## [2,] 8.5866890 2.780971 37.1504777 9.261871 13.2494696 11.4818414
## [3,] 0.8811406 22.508651 5.4220725 15.149431 8.9017692 18.2926864
## [4,] 30.5357436 10.855485 2.0259211 14.513725 5.5376659 23.8730740
## [5,] 5.0132856 4.139804 9.8201689 10.243642 0.6563297 17.6495520
## [6,] 0.5414576 6.829087 1.3986818 1.631396 0.3771882 0.7650624
## [7,] 3.9719896 17.308208 44.1672226 34.965121 8.9282219 7.8947074
## [8,] 1.8191809 13.025285 3.6744279 6.893601 0.4284052 12.8509464
## [9,] 12.6929679 25.604780 14.7738157 14.233675 3.0056984 4.6860799
## [10,] 7.7452299 6.213278 4.3579662 15.521609 9.0160782 4.1947441
## [11,] 15.4704620 18.004995 36.2805432 2.084482 2.2584762 17.2898791
## [12,] 6.9586395 7.838201 0.7279649 28.111636 2.9871684 8.6253825
## [13,] 2.6892364 24.128143 26.7780889 14.130378 17.3916731 25.9188408
## [14,] 11.6246403 28.201105 6.2348844 2.340305 5.5750695 12.6411391
## [15,] 11.0182049 13.071346 9.4850529 3.241579 5.5660194 0.3089608
## [,63] [,64] [,65] [,66] [,67] [,68]
## [1,] 15.8072694 23.8281143 22.8149999 0.9892013 18.15309990 5.606629
## [2,] 10.0984198 1.4847224 3.2984572 11.5351822 2.26720769 12.124538
## [3,] 43.1166177 0.1199877 12.3193100 5.0162157 4.68283705 5.505011
## [4,] 2.2472928 4.0070268 9.2233851 10.4182976 9.83040828 14.891515
## [5,] 9.7989361 29.4910889 8.0045859 1.2269483 4.66155557 15.303951
## [6,] 8.9267142 3.7934141 0.9713735 8.5303890 14.04306674 2.198690
## [7,] 0.5231654 19.4611941 37.9477194 12.7692636 11.40311716 2.580255
## [8,] 0.2363703 0.7639940 21.3347039 1.1468435 3.22792811 28.182286
## [9,] 3.0220686 26.0152680 7.7995362 3.5029072 10.38713681 1.382469
## [10,] 19.1216559 5.0782302 26.1510267 0.2866442 6.40640594 8.556434
## [11,] 4.4712299 16.5657413 12.8030282 25.4549759 5.03310777 6.541209
## [12,] 3.5609175 7.9896247 0.1531137 4.8909435 6.36426390 17.397810
## [13,] 7.5956645 14.0319187 3.8199452 5.7138414 2.24804443 1.230587
## [14,] 3.9112096 37.6168564 21.4209513 18.0934299 0.01640897 4.173201
## [15,] 4.3205149 3.8243763 31.3104843 4.1113916 24.23888670 5.996653
## [,69] [,70] [,71] [,72] [,73] [,74]
## [1,] 9.01376243 1.6640220 47.5089403 0.4461206 2.6836098 5.3355513
## [2,] 40.26210720 48.6258345 38.1052119 9.9844280 13.2176875 8.6350085
## [3,] 7.53873007 10.7194669 3.2598658 6.8733394 5.0678624 15.1090217
## [4,] 2.79228249 24.9069838 22.5322004 3.8741475 3.1794475 15.6863774
## [5,] 4.02778176 0.2179487 3.6061221 0.8273767 4.4978657 5.0360307
## [6,] 4.44803672 26.9320727 0.2448623 0.5152435 3.1143543 9.6208446
## [7,] 0.08467515 21.5127719 18.1543504 9.8385386 3.0571354 1.5908602
## [8,] 5.99284127 2.9038822 10.3924291 1.3552976 0.2434593 3.1088618
## [9,] 4.73102074 5.3522228 0.4086163 6.9969143 11.0048445 0.6460911
## [10,] 12.28062461 3.1225339 10.4876618 2.7075133 1.3574566 10.5960427
## [11,] 45.07145125 25.2392518 1.3165414 34.1190504 1.4092462 0.8341055
## [12,] 9.01737056 8.6402817 1.9894646 7.4277074 5.2632255 0.9762141
## [13,] 6.86644802 11.0031710 18.7254836 3.7411017 0.6174229 1.7363774
## [14,] 9.69109695 25.5809177 0.7094928 8.8111504 10.7114602 0.7567105
## [15,] 0.58347077 15.1895091 11.3125379 3.2312934 1.9854640 13.3057913
## [,75] [,76] [,77] [,78] [,79] [,80]
## [1,] 7.5239698 11.9998457 1.52561346 18.8414150 3.94365784 26.0013319
## [2,] 18.6623148 13.5336064 13.11882481 7.3273115 26.81755880 2.6310546
## [3,] 37.2564164 10.0415573 2.15103094 4.7100123 36.33221603 0.5174419
## [4,] 38.6841983 11.1998978 3.12064322 13.1903911 22.10072744 9.9626206
## [5,] 8.1464876 6.3953336 6.08117344 20.1061422 9.11248953 3.4623780
## [6,] 15.4092932 61.7796300 2.54964549 0.2645588 15.98386479 1.8948827
## [7,] 28.6776958 8.4441003 4.66002218 22.2534989 24.75535201 17.8759188
## [8,] 0.0497412 7.2090605 2.71055104 11.5806381 50.05398425 8.1358154
## [9,] 7.3048801 24.4235566 0.08515657 32.6585542 0.88945741 11.4048054
## [10,] 8.8406332 1.9997714 19.67639441 45.8771628 0.08469778 6.8760077
## [11,] 8.5874860 6.2678433 0.88545617 19.4559744 14.57386573 3.9234200
## [12,] 5.5471025 0.2438118 3.21643813 18.1872351 35.56497410 12.6773130
## [13,] 10.0551454 2.4591631 1.27194929 5.6412505 3.74268877 1.6341540
## [14,] 6.8341811 0.5305773 14.12619355 29.7940499 0.78797651 1.0643220
## [15,] 3.0711315 10.3042065 2.48395084 4.8274005 4.19310579 8.3502219
## [,81] [,82] [,83] [,84] [,85] [,86]
## [1,] 2.0638134 0.02579598 6.0842263 4.1889892 13.287225 9.5285237
## [2,] 5.2721849 15.49641635 16.1839233 5.1724223 13.826041 8.4693533
## [3,] 1.9417458 2.50301985 7.9299977 9.1808210 3.665984 9.8406758
## [4,] 13.6420281 9.20899280 20.8209300 19.4750997 3.714136 0.1435713
## [5,] 4.7542417 14.66361247 0.6454251 8.4111060 4.243990 0.5882426
## [6,] 3.4210294 40.47964206 2.9952937 16.0780935 8.828664 8.8145837
## [7,] 23.8019757 2.57400987 3.3763889 4.6411762 6.306175 1.0902285
## [8,] 2.2327073 5.91566813 3.7901558 1.0339558 5.494060 20.9471582
## [9,] 1.7040928 2.04248251 13.1581830 11.5562804 3.660370 14.3600721
## [10,] 5.8082257 10.45959884 9.7418308 1.0741319 10.628264 6.8774472
## [11,] 10.1523333 3.89654300 13.3216765 0.6671257 7.854504 3.8979647
## [12,] 1.7720696 2.49347346 0.5562825 21.6920686 7.478492 27.0856732
## [13,] 16.2676133 5.11707933 10.2418563 6.4860731 18.363590 18.9896468
## [14,] 24.2838557 10.74432908 1.4442397 6.7929874 9.156000 33.6973063
## [15,] 0.7381525 0.20600858 8.9533845 15.7739889 1.317253 5.1360758
## [,87] [,88] [,89] [,90] [,91] [,92]
## [1,] 12.31083555 9.045618e+00 0.3183116 22.24407026 17.9919015 52.2537391
## [2,] 10.93458524 1.017859e+01 0.1422989 8.91933172 6.8327426 0.2445672
## [3,] 14.33380583 1.823265e+01 5.8758426 26.42473990 9.1974917 12.5194843
## [4,] 4.36098581 7.984706e+00 13.7898025 9.46418184 16.2150392 0.3769432
## [5,] 0.03063577 3.414926e-05 0.4290948 2.70696112 11.8453642 2.9087124
## [6,] 0.33443252 1.019646e+01 8.0695905 7.99697297 19.8758113 12.7449817
## [7,] 11.52251506 7.699795e-02 8.3298521 5.27199919 8.8728520 18.5852287
## [8,] 17.79851206 1.365802e+00 2.5739779 21.50242532 14.6884587 2.2093611
## [9,] 7.46372418 6.787175e+00 7.0914638 28.08425013 0.9939626 0.1615540
## [10,] 7.27991747 1.160495e+01 1.3451885 0.09904574 17.1555799 4.9560164
## [11,] 2.28918183 1.304098e+01 11.9462873 13.67810970 2.0246100 6.0397138
## [12,] 23.33214601 8.339979e+00 28.0584812 5.44349674 27.5243850 0.3176297
## [13,] 21.55035427 1.754639e+00 45.8953373 3.77412416 5.6678117 0.7697272
## [14,] 2.40091031 1.214324e+01 12.9047933 6.42010556 52.2846966 4.9156648
## [15,] 3.50469722 2.088690e+01 4.5570448 1.06446743 4.7719528 4.7186826
## [,93] [,94] [,95] [,96] [,97] [,98]
## [1,] 16.445272 0.676129 10.1517316 25.02337078 4.8144667 5.4861536
## [2,] 2.887953 3.651585 5.9144184 2.81082692 15.7996517 7.9284336
## [3,] 8.731002 1.167463 26.6512530 4.22769499 4.6795520 0.7913793
## [4,] 2.261606 3.387288 6.7354419 13.71418728 0.6644555 26.4443809
## [5,] 2.704580 31.725147 16.9797202 4.40168950 4.0317334 2.2958979
## [6,] 5.439013 8.715027 1.0512549 17.11459992 2.8083015 0.9863592
## [7,] 3.801176 39.751422 30.1050127 5.51429616 0.1605715 0.5535277
## [8,] 16.554698 4.756227 8.3141000 0.34516902 21.4713247 24.1990486
## [9,] 6.595235 10.131866 39.4535962 2.24029600 3.5110807 1.1160875
## [10,] 6.887378 0.833206 20.5465056 74.71337299 30.6795461 13.1300367
## [11,] 10.328624 13.664375 3.0456442 12.54434721 4.9609792 13.1679705
## [12,] 0.790547 9.615062 0.8591109 1.17907503 9.9667321 14.0933843
## [13,] 2.033090 1.570858 15.0034591 0.06195743 39.2779320 3.5154207
## [14,] 4.462890 4.204607 18.6404623 11.89278763 6.1781514 11.4607819
## [15,] 6.768507 2.627512 6.0326936 11.98379079 0.7575928 2.6864108
## [,99] [,100]
## [1,] 13.03770689 33.6475747
## [2,] 5.87427107 12.3250910
## [3,] 5.11047815 52.9972078
## [4,] 19.91757547 13.6431071
## [5,] 0.26798490 8.8223487
## [6,] 1.43787051 0.3154499
## [7,] 5.93298931 15.0022146
## [8,] 10.29886325 6.9847323
## [9,] 3.04709200 18.7981574
## [10,] 7.62454860 11.0389235
## [11,] 0.71658151 24.4865300
## [12,] 1.30624784 11.7738564
## [13,] 19.23345854 6.6907235
## [14,] 2.20624391 0.2984131
## [15,] 0.02233042 2.0797851
Construye los intervalos de confianza asociados a cada una de las 100 medias obtenidas para cada muestra, con un nivel de confianza del 95%.
tint <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
temp <- t.test(datos[, i], conf.level = 0.95)
tint[i, ] <- temp$conf.int
}
tint
## [,1] [,2]
## [1,] 5.2754223 16.574661
## [2,] 6.6919956 16.876824
## [3,] 3.6006740 14.436648
## [4,] 4.5601418 15.132738
## [5,] 5.9668961 21.953390
## [6,] 4.3798733 14.372777
## [7,] 6.4280985 17.484874
## [8,] 8.8757469 19.895885
## [9,] 5.0563891 17.784775
## [10,] 5.2126709 15.807216
## [11,] 4.2226774 13.700262
## [12,] 6.8293324 16.423805
## [13,] 5.4153172 18.299044
## [14,] 4.2052542 20.278046
## [15,] 3.7300325 11.094401
## [16,] 3.4751866 32.327189
## [17,] 2.8594638 7.880517
## [18,] 4.3582250 17.287927
## [19,] 1.3530333 12.459383
## [20,] 2.6990511 9.637673
## [21,] 5.8842060 15.943979
## [22,] 5.5046961 17.825887
## [23,] 6.2181683 16.979366
## [24,] 9.2416813 17.650725
## [25,] 3.9959362 13.988949
## [26,] 7.1915052 16.567760
## [27,] 4.7784107 9.306414
## [28,] 2.4702825 18.177602
## [29,] 5.7314595 17.252177
## [30,] 7.4552450 26.633009
## [31,] 2.9381518 17.852485
## [32,] 5.7533160 10.918714
## [33,] 8.9470666 23.792119
## [34,] 4.1590480 15.343699
## [35,] 3.6474209 11.097787
## [36,] 3.6964811 15.140358
## [37,] 5.4166580 12.476225
## [38,] 4.1389580 14.839396
## [39,] 3.6421322 10.784005
## [40,] 4.7874649 13.782543
## [41,] 6.0923950 25.229064
## [42,] 3.5254614 9.351316
## [43,] 4.8458026 14.337164
## [44,] 4.4278702 13.986230
## [45,] 2.0435833 12.333963
## [46,] 5.1524202 17.747591
## [47,] 8.8137288 26.636422
## [48,] 5.0121602 16.031275
## [49,] 1.4297450 20.455157
## [50,] 6.8997180 17.383839
## [51,] 4.6708166 13.007535
## [52,] 4.0704026 13.389226
## [53,] 4.3871868 10.250631
## [54,] 1.7980837 5.189556
## [55,] 4.0016802 11.076172
## [56,] 2.3494377 12.581903
## [57,] 3.6870261 12.361944
## [58,] 9.6818494 18.687645
## [59,] 5.2855139 21.823484
## [60,] 7.4015591 17.917955
## [61,] 2.8871608 8.454957
## [62,] 7.1714582 15.892648
## [63,] 3.1157664 15.118640
## [64,] 6.3092916 19.566916
## [65,] 8.2030696 21.046613
## [66,] 3.6468121 11.511385
## [67,] 4.5362092 11.858921
## [68,] 4.6178467 12.938319
## [69,] 3.4148690 18.238691
## [70,] 8.0714654 22.809984
## [71,] 4.6162612 20.550910
## [72,] 2.1244931 11.308737
## [73,] 2.2700940 6.717978
## [74,] 3.1427947 9.253724
## [75,] 6.9967233 20.290034
## [76,] 3.4137317 20.163863
## [77,] 1.9864311 8.368641
## [78,] 10.1397827 23.822297
## [79,] 7.9924891 25.199060
## [80,] 3.8243854 11.697173
## [81,] 3.4182052 12.295937
## [82,] 2.7572604 14.019629
## [83,] 4.5891703 11.310002
## [84,] 5.0797772 12.550132
## [85,] 5.2824728 10.427494
## [86,] 5.7844587 16.811078
## [87,] 5.1373337 13.455632
## [88,] 5.3386325 12.213197
## [89,] 3.2815334 16.895449
## [90,] 5.7196074 16.026297
## [91,] 7.3219659 21.470389
## [92,] 0.8534043 15.642863
## [93,] 3.7560260 9.136184
## [94,] 2.6817492 15.515287
## [95,] 7.6330338 20.298220
## [96,] 2.1963946 22.839267
## [97,] 3.4583443 16.509932
## [98,] 3.8625518 13.184818
## [99,] 2.7759779 10.028588
## [100,] 6.9049084 22.282307
Asigna los nombres a las columnas de la matrix.
colnames(tint) <- c("lim.inf", "lim.sup")
tint <- data.frame(tint)
Genera un índice para identificar cuál de los intervalos construidos contienen al parámetro poblacional, y cuál de ellos no lo contiene.
indx <- (tint$lim.inf <= lamda) & (tint$lim.sup >= lamda)
indx
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [13] TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
## [25] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [37] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
## [49] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
## [61] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [73] FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
## [85] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
## [97] TRUE TRUE TRUE TRUE
sum(indx)
## [1] 89
Dibuja los resultados para identificar visualmente como la mayoría de los intérvalos resultantes contienen al valor del parámetro poblacional.
plot(range(tint), c(0,1 + 100), type = "n", xlab = "Medias muestrales", ylab = "Muestra")
for (i in 1:100) {lines(tint[i, ], rep(i, 2), lwd = 1)
}
abline(v = 10, lwd = 2, lty = 2)
Finalmente, agrega a la tabla de resultados los valores del índice.
tint <- data.frame(tint,indx)
tint
## lim.inf lim.sup indx
## 1 5.2754223 16.574661 TRUE
## 2 6.6919956 16.876824 TRUE
## 3 3.6006740 14.436648 TRUE
## 4 4.5601418 15.132738 TRUE
## 5 5.9668961 21.953390 TRUE
## 6 4.3798733 14.372777 TRUE
## 7 6.4280985 17.484874 TRUE
## 8 8.8757469 19.895885 TRUE
## 9 5.0563891 17.784775 TRUE
## 10 5.2126709 15.807216 TRUE
## 11 4.2226774 13.700262 TRUE
## 12 6.8293324 16.423805 TRUE
## 13 5.4153172 18.299044 TRUE
## 14 4.2052542 20.278046 TRUE
## 15 3.7300325 11.094401 TRUE
## 16 3.4751866 32.327189 TRUE
## 17 2.8594638 7.880517 FALSE
## 18 4.3582250 17.287927 TRUE
## 19 1.3530333 12.459383 TRUE
## 20 2.6990511 9.637673 FALSE
## 21 5.8842060 15.943979 TRUE
## 22 5.5046961 17.825887 TRUE
## 23 6.2181683 16.979366 TRUE
## 24 9.2416813 17.650725 TRUE
## 25 3.9959362 13.988949 TRUE
## 26 7.1915052 16.567760 TRUE
## 27 4.7784107 9.306414 FALSE
## 28 2.4702825 18.177602 TRUE
## 29 5.7314595 17.252177 TRUE
## 30 7.4552450 26.633009 TRUE
## 31 2.9381518 17.852485 TRUE
## 32 5.7533160 10.918714 TRUE
## 33 8.9470666 23.792119 TRUE
## 34 4.1590480 15.343699 TRUE
## 35 3.6474209 11.097787 TRUE
## 36 3.6964811 15.140358 TRUE
## 37 5.4166580 12.476225 TRUE
## 38 4.1389580 14.839396 TRUE
## 39 3.6421322 10.784005 TRUE
## 40 4.7874649 13.782543 TRUE
## 41 6.0923950 25.229064 TRUE
## 42 3.5254614 9.351316 FALSE
## 43 4.8458026 14.337164 TRUE
## 44 4.4278702 13.986230 TRUE
## 45 2.0435833 12.333963 TRUE
## 46 5.1524202 17.747591 TRUE
## 47 8.8137288 26.636422 TRUE
## 48 5.0121602 16.031275 TRUE
## 49 1.4297450 20.455157 TRUE
## 50 6.8997180 17.383839 TRUE
## 51 4.6708166 13.007535 TRUE
## 52 4.0704026 13.389226 TRUE
## 53 4.3871868 10.250631 TRUE
## 54 1.7980837 5.189556 FALSE
## 55 4.0016802 11.076172 TRUE
## 56 2.3494377 12.581903 TRUE
## 57 3.6870261 12.361944 TRUE
## 58 9.6818494 18.687645 TRUE
## 59 5.2855139 21.823484 TRUE
## 60 7.4015591 17.917955 TRUE
## 61 2.8871608 8.454957 FALSE
## 62 7.1714582 15.892648 TRUE
## 63 3.1157664 15.118640 TRUE
## 64 6.3092916 19.566916 TRUE
## 65 8.2030696 21.046613 TRUE
## 66 3.6468121 11.511385 TRUE
## 67 4.5362092 11.858921 TRUE
## 68 4.6178467 12.938319 TRUE
## 69 3.4148690 18.238691 TRUE
## 70 8.0714654 22.809984 TRUE
## 71 4.6162612 20.550910 TRUE
## 72 2.1244931 11.308737 TRUE
## 73 2.2700940 6.717978 FALSE
## 74 3.1427947 9.253724 FALSE
## 75 6.9967233 20.290034 TRUE
## 76 3.4137317 20.163863 TRUE
## 77 1.9864311 8.368641 FALSE
## 78 10.1397827 23.822297 FALSE
## 79 7.9924891 25.199060 TRUE
## 80 3.8243854 11.697173 TRUE
## 81 3.4182052 12.295937 TRUE
## 82 2.7572604 14.019629 TRUE
## 83 4.5891703 11.310002 TRUE
## 84 5.0797772 12.550132 TRUE
## 85 5.2824728 10.427494 TRUE
## 86 5.7844587 16.811078 TRUE
## 87 5.1373337 13.455632 TRUE
## 88 5.3386325 12.213197 TRUE
## 89 3.2815334 16.895449 TRUE
## 90 5.7196074 16.026297 TRUE
## 91 7.3219659 21.470389 TRUE
## 92 0.8534043 15.642863 TRUE
## 93 3.7560260 9.136184 FALSE
## 94 2.6817492 15.515287 TRUE
## 95 7.6330338 20.298220 TRUE
## 96 2.1963946 22.839267 TRUE
## 97 3.4583443 16.509932 TRUE
## 98 3.8625518 13.184818 TRUE
## 99 2.7759779 10.028588 TRUE
## 100 6.9049084 22.282307 TRUE
Estudios de caso 1
Germán, que realizó sus prácticas en la empresa de transportes LAMP S.A., se enfrentó con la siguiente situación. Su tutor en la empresa, le dio un informe técnico en el que hace seis meses, de una muestra aleatoria de 64 colectivos que prestan servicio en la ciudad de Asunción, se obtuvo el intervalo [ 3,8011 ; 4,3989 ] como estimación de la verdadera media del número de pasajeros por kilómetro, al nivel de confianza del 95%. La primera consigna para Germán fue que construyera, con los datos obtenidos en la muestra de 64 colectivos, un nuevo intervalo, tal que, el error máximo de la estimación fuera de 0,15 pasajeros por kilómetro
n1=64
linf1=3.8011
lsup1=4.3989
NC1=0.95
alfa1=1-NC1
z1=qnorm(1-alfa1/2)
z1
## [1] 1.959964
media1=(linf1+lsup1)/2
media1
## [1] 4.1
El error asociado al intervalo del 1er estudio
error1=lsup1-media1
error1
## [1] 0.2989
sigma1=(error1*sqrt(n1))/z1
sigma1
## [1] 1.220022
El intervalo que debe construir es de mayor precisión porque se reduce el error
error2=0.15
if(error2>error1) print("IC2 con menor precision") else print("IC2 con mayor precisión")
## [1] "IC2 con mayor precisión"
eem1=error1/z1
eem1
## [1] 0.1525028
eem2=error2/z1
eem2
## [1] 0.07653202
if (eem1==eem2) print("Permanece") else print("Se modifica")
## [1] "Se modifica"
n2=64
NC2=0.90
alfa2=1-NC2
z2=qnorm(1-alfa2/2)
z2
## [1] 1.644854
la misma información muestral implica la misma media muestral
media2=media1
linf2=media2-error2
linf2
## [1] 3.95
lsup2=media2+error2
lsup2
## [1] 4.25
NC3=0.99
alfa3=1-NC2
z3=qnorm(1-alfa2/2)
z3
## [1] 1.644854
error3=0.2
sigma3=sigma1
n3=(z3)^2*sigma3/error3^2
n3
## [1] 82.52059
Estudios de caso
Una compañía de seguros desea estudiar los hábitos respecto al riesgo de los residentes de Asunción. Se selecciona una muestra aleatoria de 40 participantes y se les pide que mantengan un registro detallado de las actividades riesgosas que realizan durante la semana. Se determinó que el número promedio de actividades riesgosas realizadas (suponiendo que dicen la verdad) es 15,3 horas y que presenta una desviación estándar muestral de 3,8 actividades.
Obtenga el IC al 98% de confianza para la media
mean=15.3
sd=3.8
n1=40
NC1=0.98
alfa1=1-NC1
alfa1
## [1] 0.02
z1=qnorm(1-alfa1/2, mean = 0, sd = 1)
z1
## [1] 2.326348
liminf1=mean-z1*sd/sqrt(n1)
liminf1
## [1] 13.90225
limsup1=mean+z1*sd/sqrt(n1)
limsup1
## [1] 16.69775
Caso 1.2
de=3.8
NC2=0.98
alfa2=1-NC2
alfa2
## [1] 0.02
e=1
z2=qnorm(1-alfa2/2,0,1)
z2
## [1] 2.326348
n2=((de*z2)/e)^2
n2
## [1] 78.14776
Caso 1.3
liminf2=mean-z2*sd/sqrt(n2)
liminf2
## [1] 14.3
limsup2=mean+z2*sd/sqrt(n2)
limsup2
## [1] 16.3
#mu1-mu2=delta
delta=-2
alfa=0.01
nivel1=c(14,12,15,15,11,16,17,12,14,13,18,13,18,15,16,11)
nivel1
## [1] 14 12 15 15 11 16 17 12 14 13 18 13 18 15 16 11
nivel2=c(20,22,18,18,19,15,18,15,22,18,19,15,21,22,18,16)
nivel2
## [1] 20 22 18 18 19 15 18 15 22 18 19 15 21 22 18 16
plot (nivel1)
Solución
n1=16
n2=16
gl=n1+n2-2
xbar1=mean(nivel1)
xbar1
## [1] 14.375
xbar2=mean(nivel2)
xbar2
## [1] 18.5
xbardif=xbar1-xbar2
xbardif
## [1] -4.125
S1=sd(nivel1)
S1
## [1] 2.276694
S2=sd(nivel2)
S2
## [1] 2.44949
REGLA: Rechazar H0 si tcalc<tcrit
Sp=sqrt(((n1-1)/(n1+n2-2))*S1^2+((n2-1)/(n1+n2-2))*S2^2)
Sp
## [1] 2.364671
tcrit=qt(alfa,gl)
tcrit
## [1] -2.457262
tcal=((xbar1-xbar2)-(delta))/(Sp*sqrt(1/n1+1/n2))
tcal
## [1] -2.541753
ENFOQUE CON PVALOR
Pvalor=pt(tcal,gl)
Pvalor
## [1] 0.008216869
CON FUNCIÓN DE R-PROJECT
t.test(nivel1,nivel2,mu=-2,alternative = c("less"), conf.level =1-alfa)
##
## Welch Two Sample t-test
##
## data: nivel1 and nivel2
## t = -2.5418, df = 29.841, p-value = 0.008232
## alternative hypothesis: true difference in means is less than -2
## 99 percent confidence interval:
## -Inf -2.070023
## sample estimates:
## mean of x mean of y
## 14.375 18.500
Alejandra es una alumna egresada de la carrera de Estadística en la FACEN que realizó su pasantía en una empresa conservera que tiene sede en Asunción y varias filiales en el país. Cuando Alejandra llegó a la empresa su tutor estaba realizando un estudio para tomar la decisión de producir una nueva marca extra condimentada de salsa de tomates. El departamento de investigación de mercado de la empresa realizó una encuesta telefónica nacional de 1.000 hogares y encontró que la salsa de tomates extra condimentada sería comprada por 330 de ellos. Hace dos años, un estudio mucho más extenso mostraba que el 25% de los hogares en ese entonces habrían comprado el producto. Su tutor le preguntó si opinaba que el interés por comprar la nueva marca había crecido significativamente.
H0: p = 0,25 H1: p > 0,25
n=1000
PH0=0.25
NC=0.98
alfa=1-NC
zcrit=qnorm(1-alfa)
zcrit
## [1] 2.053749
Pest=330/1000
zcal=(Pest-PH0)/sqrt((PH0*(1-PH0))/n)
zcal
## [1] 5.842374
Pvalor=1-pbinom(330,1000,0.25,log = FALSE)
Pvalor
## [1] 5.82433e-09
binom.test(x=330,n=1000,p=0.25,alternative="greater",conf.level = 0.98)
##
## Exact binomial test
##
## data: 330 and 1000
## number of successes = 330, number of trials = 1000, p-value = 8.708e-09
## alternative hypothesis: true probability of success is greater than 0.25
## 98 percent confidence interval:
## 0.299546 1.000000
## sample estimates:
## probability of success
## 0.33
Debe rechazar la H0, y Debe concluir que actualmente existe un mayor interes
Error de tipo I
xcrit=qbinom((1-0.02),1000,0.25)
xcrit
## [1] 278
alfa=1-pbinom(xcrit,1000,0.25)
alfa
## [1] 0.01958826
Error de tipo II: Asumida una H1 alternativa P=0.30
beta=pbinom(xcrit,1000,0.30)
beta
## [1] 0.06818224
De acuerdo con los resultados de la encuesta a egresados de la FACEN del año 2005, un estudiante de tecnología de producción puede esperar un salario promedio igual al egresar que los estudiantes de la carrera de estadística. Marcos, un estudiante del último año de la carrera de estadística, decide verificar si dicha hipótesis se mantenía luego de 10 años. Para ello relevó datos de dos muestras aleatorias de egresados de ambas carreras del año 2015 para realizar una prueba de hipótesis. Los datos recabados sobre los salarios percibidos (en millones de Gs. en la actualidad) y los resultados de la prueba fueron los siguientes:
tecnol <-c(5,4.1,3,2.5,2.6,2.1,2.0,5,7,2,2.1,2.3,2.6,3.5)
estad <-c(5.1,5.2,2.0,3.0,4,6,2,8,8.1,10,2.0)
De acuerdo con los resultados, Marcos puede rechazar la hipótesis nula de que un egresado de la carrera de tecnología puede esperar un ingreso igual que un egresado de la carrera de estadística?
Dado el intervalo de confianza obtenido por Marcos, es correcto decir que la probabilidad de que el verdadero valor de la diferencia de ingresos medios esté entre -0,2134 y 3,7433 es de 95%?
El Pvalor obtenido por Marcos significa que existe un 7,652% de probabilidad de obtener una diferencia de medias mayor que +1,764935?
mean(estad)
## [1] 5.036364
mean(tecnol)
## [1] 3.271429
test <- t.test(estad,tecnol,mu = 0,alternative="greater", conf.level = 0.95)
test
##
## Welch Two Sample t-test
##
## data: estad and tecnol
## t = 1.9068, df = 14.529, p-value = 0.03826
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## 0.1388691 Inf
## sample estimates:
## mean of x mean of y
## 5.036364 3.271429
difmean=mean(estad)-mean(tecnol)
difmean
## [1] 1.764935