Introduction

\[ x^2-12x+14=0. \]

\[ \int_{-\infty }^{+\infty }e^{-x^2}dx=\sqrt\pi. \]

Mettre un lien hypertexte Le wikipedia du Cnam.

Les Chunks

  • Pour exécuter des lignes de code en R, vous pouvez insérer ces lignes à partir du menu.
1+1
[1] 2

Probability and statistics with R

Vectors

x <- 5 
x
[1] 5
y <- c(7, 3, 5)
y
[1] 7 3 5
z <- c(2, 4, 6, 8)
length(z)
[1] 4
length(x)
[1] 1
length(y)
[1] 3
x + y
[1] 12  8 10
y + z # Opération non souhaitée car pas de même longueur
longer object length is not a multiple of shorter object length
[1]  9  7 11 15
# Supposons que z soient des prix en euros. Pour les convertir en dollars, il suffit de faire
0.87*z
[1] 1.74 3.48 5.22 6.96

LogVec <- (x < z) # logical vector LogVec # 5 < 2, 5 < 4, 5 < 6, 5 < 8 [1] FALSE FALSE TRUE TRUE typeof(LogVec)

LogVec <- (x < z)
LogVec
[1] FALSE FALSE  TRUE  TRUE
typeof(LogVec)
[1] "logical"
typeof(x)
[1] "double"
z
[1] 2 4 6 8
z[2]
[1] 4
typeof(z)
[1] "double"
z<-as.integer(z)
typeof(z)
[1] "integer"
LETTERS ## vecteur contenant les lettres de l'alphabet
 [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N"
[15] "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"
LETTERS[10] ## 10ème lettre  
[1] "J"
LETTERS[c(1, 2, 3, 4)] ## Les quatre premières lettres
[1] "A" "B" "C" "D"
LETTERS[1:20] ## Les vingt premières lettres
 [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N"
[15] "O" "P" "Q" "R" "S" "T"
1:20 ## crée une liste (ou un vecteur) des nombres de 1 à 20
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
[20] 20
1980:2021     ## Créez un vecteur d'années de 1980 à 2021
 [1] 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
[12] 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
[23] 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
[34] 2013 2014 2015 2016 2017 2018 2019 2020 2021
seq(1980,2021,4)              ##  Créez un vecteur des années bisextiles depuis  1980
 [1] 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020
z
[1] 2 4 6 8
z[1] ## Garder le premier élément
[1] 2
z[-1] ## Enlever le premier élément
[1] 4 6 8
z[c(1,2)]      ## Garder les deux premiers éléments  
[1] 2 4
z[-c(1,2)] ## Enlever les deux premiers éléments
[1] 6 8
z[-(1:2)] ## Idem
[1] 6 8
z[z>5] ## Garder les éléments supérieurs à 5
[1] 6 8

data<-c(rep(c("Nord","Oui"),0.3*30000),
rep(c("Nord","Non"),0.1*30000),
rep(c("Sud","Oui"),0.2*30000),
rep(c("Sud","Non"),0.4*30000))

data<-matrix(data,nrow=30000,ncol=2,byrow=TRUE)
data<-as.data.frame(data)
typeof(data)
[1] "list"
class(data)
[1] "data.frame"
is.data.frame(data)
[1] TRUE
class(x)
[1] "numeric"
typeof(x)
[1] "double"
names(data)<-c("Région","Réponse")
head(data)
te<-table(data) ## Tableau d'effectifs
te          
      Réponse
Région   Non   Oui
  Nord  3000  9000
  Sud  12000  6000
  ## Tableau de proportions
prop.table(te) ## Calcule le tableau en proportions à partir du tableau en effectifs
      Réponse
Région Non Oui
  Nord 0.1 0.3
  Sud  0.4 0.2
addmargins(prop.table(te)) ## Rajoute les marges, sommes en ligne et en colonne
      Réponse
Région Non Oui Sum
  Nord 0.1 0.3 0.4
  Sud  0.4 0.2 0.6
  Sum  0.5 0.5 1.0
addmargins(prop.table(te,1),2) ## Calcule les prop. en ligne (en conditionnant par les lignes) et rajoute les marges qui ont un sens
      Réponse
Région       Non       Oui       Sum
  Nord 0.2500000 0.7500000 1.0000000
  Sud  0.6666667 0.3333333 1.0000000
addmargins(prop.table(te,2),1) ## Calcule les prop. en colonne (conditionnelles) et rajoute les marges qui ont un sens
      Réponse
Région Non Oui
  Nord 0.2 0.6
  Sud  0.8 0.4
  Sum  1.0 1.0
Grades <- c("A", "D", "C", "D", "C", "C", "C", "C", "F", "B") # Crée la variable
Grades # Affiche la variable
 [1] "A" "D" "C" "D" "C" "C" "C" "C" "F" "B"
table(Grades) # Crée une table de fréquence
Grades
A B C D F 
1 1 5 2 1 
xtabs(~Grades) # Idem avec la fonction xtabs
Grades
A B C D F 
1 1 5 2 1 
table(Grades)/length(Grades) # Crée la table en prop.
Grades
  A   B   C   D   F 
0.1 0.1 0.5 0.2 0.1 
prop.table(table(Grades)) # Idem
Grades
  A   B   C   D   F 
0.1 0.1 0.5 0.2 0.1 
prop.table(xtabs(~Grades)) # Idem
Grades
  A   B   C   D   F 
0.1 0.1 0.5 0.2 0.1 

Utiliser des données qui se trouvent dans un Package

addmargins(xtabs(~Age+Sex,data=quine))
     Sex
Age     F   M Sum
  F0   10  17  27
  F1   32  14  46
  F2   19  21  40
  F3   19  14  33
  Sum  80  66 146

Utiliser les pipes

Des graphiques plus sophistiqués

Stem and leaf plot

Statistiques de base

summary(df)
   randomnorm   
 Min.   :17.29  
 1st Qu.:39.07  
 Median :45.74  
 Mean   :46.08  
 3rd Qu.:53.30  
 Max.   :71.25  

Charger des données sur un lien

LS0tCnRpdGxlOiAiSW50aXRhdGlvbiDDoCBSU3R1ZGlvIgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazogZGVmYXVsdAogIHdvcmRfZG9jdW1lbnQ6IGRlZmF1bHQKLS0tCgojIEludHJvZHVjdGlvbgoKKiBOb3VzIGFsbG9ucyDDqXR1ZGllciBsYSBwcm9ncmFtbWF0aW9uIGF2ZWMgKipSKiouIAoqIE5vdXMgc29tbWVzIGRhbnMgdW4gKk5vdGVib29rKi4KKiBOb3VzIHBvdXZvbnMgw6ljcmlyZSBkZXMgZm9tdWxlcyBkZSBtYXRow6ltYXRpcXVlcyBlbiAqTEFURVgqLgoqIFBhciBleGVtcGxlLCBqZSBwZXV4IMOpY3JpcmUgdW5lIMOpcXVhdGlvbiBjb21tZSA6CgokJAp4XjItMTJ4KzE0PTAuCiQkCgoqIERlcyBmb3JtdWxlcyB1biBwZXUgcGx1cyBzb3BoaXN0aXF1w6llcwoKJCQKXGludF97LVxpbmZ0eSB9XnsrXGluZnR5IH1lXnsteF4yfWR4PVxzcXJ0XHBpLgokJAoKTWV0dHJlIHVuIGxpZW4gaHlwZXJ0ZXh0ZSBbTGUgd2lraXBlZGlhIGR1IENuYW1dKGh0dHBzOi8vZnIubS53aWtpcGVkaWEub3JnL3dpa2kvQ29uc2VydmF0b2lyZV9uYXRpb25hbF9kZXNfYXJ0c19ldF9tJUMzJUE5dGllcnMpLgoKIyMgTGVzIENodW5rcwoKKiBQb3VyIGV4w6ljdXRlciBkZXMgbGlnbmVzIGRlIGNvZGUgZW4gKipSKiosIHZvdXMgcG91dmV6IGluc8OpcmVyIGNlcyBsaWduZXMgw6AgcGFydGlyIGR1IG1lbnUuCgoKYGBge3J9CjErMQpgYGAKCgoKIyBQcm9iYWJpbGl0eSBhbmQgc3RhdGlzdGljcyB3aXRoIFIKCgojIyBWZWN0b3JzCgoKYGBge3J9CnggPC0gNSAKeAp5IDwtIGMoNywgMywgNSkKeQp6IDwtIGMoMiwgNCwgNiwgOCkKbGVuZ3RoKHopCmxlbmd0aCh4KQpsZW5ndGgoeSkKeCArIHkKeSArIHogIyBPcMOpcmF0aW9uIG5vbiBzb3VoYWl0w6llIGNhciBwYXMgZGUgbcOqbWUgbG9uZ3VldXIKIyBTdXBwb3NvbnMgcXVlIHogc29pZW50IGRlcyBwcml4IGVuIGV1cm9zLiBQb3VyIGxlcyBjb252ZXJ0aXIgZW4gZG9sbGFycywgaWwgc3VmZml0IGRlIGZhaXJlCjAuODcqegpgYGAKCj4gTG9nVmVjIDwtICh4IDwgeikgIyBsb2dpY2FsIHZlY3Rvcgo+IExvZ1ZlYyAjIDUgPCAyLCA1IDwgNCwgNSA8IDYsIDUgPCA4ClsxXSBGQUxTRSBGQUxTRSBUUlVFIFRSVUUKPiB0eXBlb2YoTG9nVmVjKQoKCmBgYHtyfQpMb2dWZWMgPC0gKHggPCB6KQpMb2dWZWMKdHlwZW9mKExvZ1ZlYykKdHlwZW9mKHgpCmBgYAoKCgpgYGB7cn0Kegp6WzJdCnR5cGVvZih6KQp6PC1hcy5pbnRlZ2VyKHopCnR5cGVvZih6KQoKYGBgCgoKYGBge3J9CkxFVFRFUlMgIyMgdmVjdGV1ciBjb250ZW5hbnQgbGVzIGxldHRyZXMgZGUgbCdhbHBoYWJldApMRVRURVJTWzEwXSAjIyAxMMOobWUgbGV0dHJlICAKTEVUVEVSU1tjKDEsIDIsIDMsIDQpXSAjIyBMZXMgcXVhdHJlIHByZW1pw6hyZXMgbGV0dHJlcwpMRVRURVJTWzE6MjBdICMjIExlcyB2aW5ndCBwcmVtacOocmVzIGxldHRyZXMKMToyMCAjIyBjcsOpZSB1bmUgbGlzdGUgKG91IHVuIHZlY3RldXIpIGRlcyBub21icmVzIGRlIDEgw6AgMjAKMTk4MDoyMDIxICAgICAjIyBDcsOpZXogdW4gdmVjdGV1ciBkJ2FubsOpZXMgZGUgMTk4MCDDoCAyMDIxCnNlcSgxOTgwLDIwMjEsNCkgICAgICAgICAgICAgICMjICBDcsOpZXogdW4gdmVjdGV1ciBkZXMgYW5uw6llcyBiaXNleHRpbGVzIGRlcHVpcyAgMTk4MAoKCmBgYAoKCmBgYHtyfQp6CnpbMV0gIyMgR2FyZGVyIGxlIHByZW1pZXIgw6lsw6ltZW50CnpbLTFdICMjIEVubGV2ZXIgbGUgcHJlbWllciDDqWzDqW1lbnQKeltjKDEsMildICAgICAgIyMgR2FyZGVyIGxlcyBkZXV4IHByZW1pZXJzIMOpbMOpbWVudHMgIAp6Wy1jKDEsMildICMjIEVubGV2ZXIgbGVzIGRldXggcHJlbWllcnMgw6lsw6ltZW50cwp6Wy0oMToyKV0gIyMgSWRlbQoKelt6PjVdICMjIEdhcmRlciBsZXMgw6lsw6ltZW50cyBzdXDDqXJpZXVycyDDoCA1CgpgYGAKCgpgYGB7cn0KCmRhdGE8LWMocmVwKGMoIk5vcmQiLCJPdWkiKSwwLjMqMzAwMDApLApyZXAoYygiTm9yZCIsIk5vbiIpLDAuMSozMDAwMCksCnJlcChjKCJTdWQiLCJPdWkiKSwwLjIqMzAwMDApLApyZXAoYygiU3VkIiwiTm9uIiksMC40KjMwMDAwKSkKCmRhdGE8LW1hdHJpeChkYXRhLG5yb3c9MzAwMDAsbmNvbD0yLGJ5cm93PVRSVUUpCmRhdGE8LWFzLmRhdGEuZnJhbWUoZGF0YSkKdHlwZW9mKGRhdGEpCmNsYXNzKGRhdGEpCmlzLmRhdGEuZnJhbWUoZGF0YSkKY2xhc3MoeCkKdHlwZW9mKHgpCm5hbWVzKGRhdGEpPC1jKCJSw6lnaW9uIiwiUsOpcG9uc2UiKQpoZWFkKGRhdGEpCnRlPC10YWJsZShkYXRhKSAjIyBUYWJsZWF1IGQnZWZmZWN0aWZzCnRlICAgICAgICAgIAogICMjIFRhYmxlYXUgZGUgcHJvcG9ydGlvbnMKcHJvcC50YWJsZSh0ZSkgIyMgQ2FsY3VsZSBsZSB0YWJsZWF1IGVuIHByb3BvcnRpb25zIMOgIHBhcnRpciBkdSB0YWJsZWF1IGVuIGVmZmVjdGlmcwphZGRtYXJnaW5zKHByb3AudGFibGUodGUpKSAjIyBSYWpvdXRlIGxlcyBtYXJnZXMsIHNvbW1lcyBlbiBsaWduZSBldCBlbiBjb2xvbm5lCmFkZG1hcmdpbnMocHJvcC50YWJsZSh0ZSwxKSwyKSAjIyBDYWxjdWxlIGxlcyBwcm9wLiBlbiBsaWduZSAoZW4gY29uZGl0aW9ubmFudCBwYXIgbGVzIGxpZ25lcykgZXQgcmFqb3V0ZSBsZXMgbWFyZ2VzIHF1aSBvbnQgdW4gc2VucwphZGRtYXJnaW5zKHByb3AudGFibGUodGUsMiksMSkgIyMgQ2FsY3VsZSBsZXMgcHJvcC4gZW4gY29sb25uZSAoY29uZGl0aW9ubmVsbGVzKSBldCByYWpvdXRlIGxlcyBtYXJnZXMgcXVpIG9udCB1biBzZW5zCgpgYGAKCgpgYGB7cn0KR3JhZGVzIDwtIGMoIkEiLCAiRCIsICJDIiwgIkQiLCAiQyIsICJDIiwgIkMiLCAiQyIsICJGIiwgIkIiKSAjIENyw6llIGxhIHZhcmlhYmxlCkdyYWRlcyAjIEFmZmljaGUgbGEgdmFyaWFibGUKdGFibGUoR3JhZGVzKSAjIENyw6llIHVuZSB0YWJsZSBkZSBmcsOpcXVlbmNlCnh0YWJzKH5HcmFkZXMpICMgSWRlbSBhdmVjIGxhIGZvbmN0aW9uIHh0YWJzCnRhYmxlKEdyYWRlcykvbGVuZ3RoKEdyYWRlcykgIyBDcsOpZSBsYSB0YWJsZSBlbiBwcm9wLgpwcm9wLnRhYmxlKHRhYmxlKEdyYWRlcykpICMgSWRlbQpwcm9wLnRhYmxlKHh0YWJzKH5HcmFkZXMpKSAjIElkZW0KYGBgCiMgVXRpbGlzZXIgZGVzIGRvbm7DqWVzIHF1aSBzZSB0cm91dmVudCBkYW5zIHVuIFBhY2thZ2UKCmBgYHtyfQpsaWJyYXJ5KE1BU1MpICMgQWN0aXZlIGxlIFBhY2thZ2UgTUFTUwojIGRhdGEocGFja2FnZT0iTUFTUyIpICMgTW9udHJlIHRvdXMgbGVzIGZpY2hpZXJzIGRlIGRvbm7DqWVzIGR1IFBhY2thZ2UgTUFTUwpoZWFkKHF1aW5lKSAjIE1vbnRyZSBsZXMgNiBwcmVtacOocmVzIGxpZ25lIGRlIGR1IGZpY2hpZXIgcXVpbmUKdGFibGUocXVpbmUkQWdlKQp4dGFicyh+QWdlLGRhdGE9cXVpbmUpICMgRWZmZWN0aWZzIHBhciBBZ2UKbmFtZXMocXVpbmUpICMgRG9ubmUgbGUgbm9tIGRlcyB2YXJpYWJsZXMKeHRhYnMofkFnZStTZXgsZGF0YT1xdWluZSkgIyBPbiBjcm9pc2UgbGEgdmFyaWFibGUgQWdlIGV0IFNleAphZGRtYXJnaW5zKHh0YWJzKH5BZ2UrU2V4LGRhdGE9cXVpbmUpKQoKI3RhYmxlKHF1aW5lJEFnZSkgIGFjY2Vzc2luZyBBZ2UgdXNpbmcgZG9sbGFyIHByZWZpeGluZwpgYGAKIyBVdGlsaXNlciBsZXMgcGlwZXMKCgpgYGB7cn0KbGlicmFyeShtYWdyaXR0cikKbGlicmFyeShNQVNTKSAjIENoYXJnZXIgdW5lIGxpYnJhaXJpZSBwb3VyIGxlcyBwaXBlcwp4dGFicyh+QWdlK1NleCxkYXRhPXF1aW5lKSAlPiUgCmFkZG1hcmdpbnMoKQogIAp4dGFicyh+R3JhZGVzLGRhdGE9cXVpbmUpJT4lIApiYXJwbG90KCkKCmBgYAoKIyBEZXMgZ3JhcGhpcXVlcyBwbHVzIHNvcGhpc3RpcXXDqXMKCmBgYHtyfQpsaWJyYXJ5KGdncGxvdDIpICMgT24gY2hhcmdlIGNldHRlIGxpYnJhaXJpZSBkZSBkYXRhdml6CmlzLmRhdGEuZnJhbWUocXVpbmUpCgpnZ3Bsb3QoZGF0YT1xdWluZSwgYWVzKHg9QWdlKSkrIApnZW9tX2JhcihhZXMoeSA9ICguLmNvdW50Li4pL3N1bSguLmNvdW50Li4pKSkKCmJwPC1nZ3Bsb3QoZGF0YT1xdWluZSwgYWVzKHg9QWdlKSkrIApnZW9tX2JhcihhZXMoeSA9ICguLmNvdW50Li4pKSxmaWxsID0gInJlZCIpK2dndGl0bGUoIkRpc3RyaWJ1dGlvbiBkZXMgw6JnZXMiKSAreWxhYigiRWZmZWN0aWYiKSt4bGFiKCJDbGFzc2UgZCfDomdlIikKYnAKcGllKHh0YWJzKH5BZ2UsZGF0YT1xdWluZSkpICMjIEZhaXJlIGxlIHBpZSBjaGFydCBhdmVjIGdncGxvdDIKCgpgYGAKCiMgU3RlbSBhbmQgbGVhZiBwbG90CgoKCmBgYHtyfQpzZXQuc2VlZCgxMjMpICMgSW5pdGlhbGlzZXIgbGUgZ2VuLiBhbGVhdG9pcmUKcmFuZG9tbm9ybTwtcm5vcm0oMTAwLDQ1LDEyKSAjIEfDqW7DqXJlciAxMDAgbm9tYnJlIGFsw6lhdG9pcmUgc2Vsb24gdW5lIGxvaSBub3JtYWxlIGRlIG1veWVubmUgNDUgZXQgZCLDqWNhcnQtdHlwZSAxMgpoaXN0KHJhbmRvbW5vcm0sY29sPSJyZWQiKSAjIEhpc3RvZ3JhbSBzaW1wbGUKc3RlbShyYW5kb21ub3JtKSAgIyBTdGVtIGFuZCBsZWFmIHBsb3QKbWluKHJhbmRvbW5vcm0pICMgVmFsZXVyIG1pbmltYWxlCm1heChyYW5kb21ub3JtKSAjIFZhbGV1ciBtYXhpbWFsZQpkZj1kYXRhLmZyYW1lKHJhbmRvbW5vcm0pCgpnZ3Bsb3QoZGF0YT1kZiwgYWVzKHg9cmFuZG9tbm9ybSkpK2dlb21faGlzdG9ncmFtKGJpbnM9NixmaWxsPSJyZWQiKQoKYGBgCgoKCiMgU3RhdGlzdGlxdWVzIGRlIGJhc2UKCgoKYGBge3J9CgptZWFuKGRmJHJhbmRvbW5vcm0pICMgTW95ZW5uZQpzZChkZiRyYW5kb21ub3JtKSAjIEVjYXJ0LXR5cGUKdmFyKGRmJHJhbmRvbW5vcm0pICMgVmFyaWFuY2UKbWVkaWFuKGRmJHJhbmRvbW5vcm0pICMgbcOpZGlhbmUKc3VtbWFyeShkZiRyYW5kb21ub3JtKQpzdW1tYXJ5KGRmKQoKYGBgCiMgQ2hhcmdlciBkZXMgZG9ubsOpZXMgc3VyIHVuIGxpZW4KCmBgYHtyfQpyZWFkLmNzdigiaHR0cHM6Ly9yYXcuZ2l0aHVidXNlcmNvbnRlbnQuY29tL2thcmtpbDIyMDUvU2VtaW5haXJlLU1ldGhvZGVzLVF1YW50aXRhdGl2ZXMvbWFpbi9Cb2R5ZmF0LmNzdiIpCmBgYAoK