Summaries

Times

TTC Stats by Time Type

## 
##  Descriptive statistics by group 
## group: ttc_Start
##    vars    n mean     sd median trimmed  mad min   max range  skew kurtosis
## X1    1 3014 52.7 757.36      4    7.51 5.93   0 30114 30114 34.57  1273.98
##      se
## X1 13.8
## ------------------------------------------------------------ 
## group: ttc_End
##    vars    n  mean     sd median trimmed  mad min   max range  skew kurtosis se
## X1    1 3014 56.51 768.83      5    8.84 5.93   0 30115 30115 33.32   1201.7 14
## ------------------------------------------------------------ 
## group: TimetoComplete
##    vars    n mean     sd median trimmed  mad min  max range  skew kurtosis   se
## X1    1 3014 3.81 108.71      1    0.61 1.48   0 5884  5884 52.69  2838.52 1.98


TTC_Start by Exam


## 
##  Descriptive statistics by group 
## group: 1
##    vars   n mean    sd median trimmed  mad min  max range skew kurtosis   se
## X1    1 820 24.3 91.07      4    7.54 5.93   0 1248  1248 9.11   101.91 3.18
## ------------------------------------------------------------ 
## group: 2
##    vars   n  mean     sd median trimmed  mad min   max range  skew kurtosis
## X1    1 898 71.89 1058.3      3     6.9 4.45   0 30114 30114 26.23   726.57
##       se
## X1 35.32
## ------------------------------------------------------------ 
## group: 3
##    vars   n mean     sd median trimmed  mad min  max range skew kurtosis   se
## X1    1 853   32 141.44      5     8.3 7.41   0 1918  1918 9.13    92.64 4.84
## ------------------------------------------------------------ 
## group: 4
##    vars   n   mean      sd median trimmed  mad min   max range  skew kurtosis
## X1    1 443 106.26 1255.87      3    7.65 4.45   0 25833 25833 19.54      395
##       se
## X1 59.67

Symptom Measures

PTQ Scores

## df$PTQscore 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     2978       36       58    0.999    20.41    14.88        1        3 
##      .25      .50      .75      .90      .95 
##       10       20       29       38       43 
## 
## lowest :  0  1  2  3  4, highest: 53 54 55 56 60

PTQ by Cohort

## 
##  Descriptive statistics by group 
## group: 3000
##    vars   n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 620 20.11 12.07     19    19.7 13.34   0  60    60 0.26    -0.71 0.48
## ------------------------------------------------------------ 
## group: 4000
##    vars   n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 924 20.78 12.99     21   20.22 14.83   0  60    60 0.31    -0.52 0.43
## ------------------------------------------------------------ 
## group: 5000
##    vars    n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 1434 20.29 13.49     19   19.67 14.83   0  60    60 0.34    -0.58 0.36

Predictions

Prediction 1

## df$Prediction_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     2538      476       69    0.988    72.51    17.69       40       50 
##      .25      .50      .75      .90      .95 
##       65       75       85       90       92 
## 
## lowest :   0   2   3   5   6, highest:  95  96  97  98 100

Prediction 2

## df$Prediction_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     2773      241       80    0.989    69.29    18.61       34       50 
##      .25      .50      .75      .90      .95 
##       60       70       80       90       90 
## 
## lowest :   0   1   2   3   5, highest:  95  96  97  98 100

Are Predictions 1 and 2 different?

## 
##  Paired t-test
## 
## data:  df$Prediction_1 and df$Prediction_2
## t = 17.642, df = 2536, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  2.441838 3.052526
## sample estimates:
## mean of the differences 
##                2.747182

All observations

TTC Start

## df$ttc_Start 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3014        0      226    0.982     52.7    97.33        0        0 
##      .25      .50      .75      .90      .95 
##        0        4       12       51      114 
## 
## lowest :     0     1     2     3     4, highest:  1998  4852  9298 25833 30114
##                                                                 
## Value          0   500  1000  1500  2000  5000  9500 26000 30000
## Frequency   2948    40    10    10     2     1     1     1     1
## Proportion 0.978 0.013 0.003 0.003 0.001 0.000 0.000 0.000 0.000
## 
## For the frequency table, variable is rounded to the nearest 500

Cut off 1 (< 2,000 mins)

TTC Start

## ttcmod$ttc_Start 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3010        0      222    0.982    29.49    51.05      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      4.0     12.0     50.0    110.5 
## 
## lowest :    0    1    2    3    4, highest: 1569 1570 1607 1918 1998

Cut off 2 (< 1,000 mins)

TTC Start

## ttcmod2$ttc_Start 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     2989        0      201    0.982    19.99    32.62      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      4.0     11.0     47.0     94.8 
## 
## lowest :   0   1   2   3   4, highest: 553 626 670 696 785

TTC Start and PTQ

All observations

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ PTQscore + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 46485.9
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -0.221 -0.092 -0.049 -0.005 50.485 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)      0     0.0   
##  Residual             353379   594.5   
## Number of obs: 2978, groups:  ID, 919
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)   
## (Intercept)   -5.234     20.225 2976.000  -0.259  0.79580   
## PTQscore       2.298      0.835 2976.000   2.752  0.00595 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## PTQscore -0.843
## convergence code: 0
## boundary (singular) fit: see ?isSingular

All obs (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ PTQscore + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 10760.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7269 -0.6128 -0.1572  0.4601  6.0826 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7294   0.854   
##  Residual             1.6510   1.285   
## Number of obs: 2978, groups:  ID, 919
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 1.627e+00  6.871e-02 8.864e+02  23.673   <2e-16 ***
## PTQscore    5.144e-03  2.821e-03 9.062e+02   1.823   0.0686 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## PTQscore -0.842

Cut off 1 (< 2,000 mins)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ PTQscore + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 36700.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0298 -0.1779 -0.1417 -0.0932 15.8323 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  1980     44.5   
##  Residual             11688    108.1   
## Number of obs: 2975, groups:  ID, 919
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)  21.2403     4.6131 780.1172   4.604 4.83e-06 ***
## PTQscore      0.2918     0.1900 802.4902   1.535    0.125    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## PTQscore -0.842

Cut off 1 (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ PTQscore + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 10657.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8151 -0.6117 -0.1579  0.4679  4.5765 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7432   0.8621  
##  Residual             1.5831   1.2582  
## Number of obs: 2975, groups:  ID, 919
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 1.635e+00  6.851e-02 8.853e+02  23.867   <2e-16 ***
## PTQscore    4.347e-03  2.814e-03 9.061e+02   1.545    0.123    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## PTQscore -0.842

Cut off 1 (< 1,000 mins)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ PTQscore + (1 | ID)
##    Data: ttcmod2
## 
## REML criterion at convergence: 31923.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4340 -0.2691 -0.2283 -0.1182 12.1786 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  398.5   19.96   
##  Residual             2509.8   50.10   
## Number of obs: 2958, groups:  ID, 918
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)  18.73203    2.11856 845.57902   8.842   <2e-16 ***
## PTQscore      0.03020    0.08741 870.52873   0.345     0.73    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## PTQscore -0.842

TTC Start and Prediction 1

All observations

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_1 + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 39714.3
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -0.109 -0.061 -0.053 -0.035 49.597 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)    299.3  17.3   
##  Residual             366999.4 605.8   
## Number of obs: 2538, groups:  ID, 895
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)     5.1393    53.4076 2155.8490   0.096    0.923
## Prediction_1    0.4258     0.7176 2142.9259   0.593    0.553
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_1 -0.974

All obs (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ Prediction_1 + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 9033.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8354 -0.6038 -0.1375  0.4591  6.3639 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7085   0.8417  
##  Residual             1.5344   1.2387  
## Number of obs: 2538, groups:  ID, 895
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   1.754e+00  1.368e-01  2.382e+03  12.820   <2e-16 ***
## Prediction_1 -1.033e-03  1.831e-03  2.443e+03  -0.564    0.573    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_1 -0.961

Cut off 1 (< 2,000 mins)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_1 + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 30629.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0456 -0.1907 -0.1416 -0.0848 14.2807 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1429     37.81   
##  Residual             9026     95.00   
## Number of obs: 2537, groups:  ID, 895
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    46.9423     9.3374 2160.0583   5.027 5.38e-07 ***
## Prediction_1   -0.3137     0.1255 2184.3578  -2.500   0.0125 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_1 -0.969

Cut off 1 (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ Prediction_1 + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 8982
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9013 -0.6112 -0.1421  0.4620  3.9214 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7255   0.8517  
##  Residual             1.4901   1.2207  
## Number of obs: 2537, groups:  ID, 895
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   1.771e+00  1.358e-01  2.392e+03  13.048   <2e-16 ***
## Prediction_1 -1.320e-03  1.816e-03  2.454e+03  -0.727    0.467    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_1 -0.960

Cut off 2 (< 1,000 mins)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_1 + (1 | ID)
##    Data: ttcmod2
## 
## REML criterion at convergence: 27189.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6588 -0.2610 -0.2092 -0.1127 12.3449 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  440.5   20.99   
##  Residual             2405.6   49.05   
## Number of obs: 2525, groups:  ID, 895
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    22.55677    4.91937 2138.70048   4.585  4.8e-06 ***
## Prediction_1   -0.05738    0.06606 2169.23496  -0.869    0.385    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_1 -0.969

TTC Start and Prediction 1 (controlling for confidence)

All observations

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_1 + Prediction_1_confidence + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 39640.1
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -0.126 -0.064 -0.049 -0.029 49.524 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)    493.4  22.21  
##  Residual             367611.4 606.31  
## Number of obs: 2533, groups:  ID, 895
## 
## Fixed effects:
##                          Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)              -16.4236    62.6258 2055.1585  -0.262    0.793
## Prediction_1               0.4425     0.7221 2129.4239   0.613    0.540
## Prediction_1_confidence    0.3319     0.4961 2036.1465   0.669    0.504
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_1
## Predictin_1 -0.853       
## Prdctn_1_cn -0.514  0.034

All obs (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ Prediction_1 + Prediction_1_confidence + (1 |      ID)
##    Data: df
## 
## REML criterion at convergence: 9020.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8349 -0.6160 -0.1367  0.4627  6.4087 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7142   0.8451  
##  Residual             1.5267   1.2356  
## Number of obs: 2533, groups:  ID, 895
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              1.873e+00  1.616e-01  2.364e+03  11.590   <2e-16 ***
## Prediction_1            -1.231e-03  1.840e-03  2.437e+03  -0.669    0.503    
## Prediction_1_confidence -1.767e-03  1.274e-03  2.432e+03  -1.387    0.166    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_1
## Predictin_1 -0.844       
## Prdctn_1_cn -0.527  0.054

Cut off 1 (< 2,000)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_1 + Prediction_1_confidence + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 30575.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0327 -0.1914 -0.1398 -0.0838 14.2376 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1430     37.82   
##  Residual             9042     95.09   
## Number of obs: 2532, groups:  ID, 895
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               40.84194   11.01009 2076.60215   3.710 0.000213 ***
## Prediction_1              -0.31189    0.12625 2170.57257  -2.470 0.013575 *  
## Prediction_1_confidence    0.09729    0.08719 2106.13564   1.116 0.264633    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_1
## Predictin_1 -0.849       
## Prdctn_1_cn -0.522  0.045

Cut off 1 (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ Prediction_1 + Prediction_1_confidence + (1 |      ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 8967.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9140 -0.6177 -0.1426  0.4679  3.9227 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7318   0.8555  
##  Residual             1.4816   1.2172  
## Number of obs: 2532, groups:  ID, 895
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              1.906e+00  1.604e-01  2.377e+03  11.882   <2e-16 ***
## Prediction_1            -1.542e-03  1.825e-03  2.448e+03  -0.845    0.398    
## Prediction_1_confidence -1.990e-03  1.264e-03  2.444e+03  -1.574    0.116    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_1
## Predictin_1 -0.844       
## Prdctn_1_cn -0.527  0.055

Cut off 2 (< 1,000)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_1 + Prediction_1_confidence + (1 | ID)
##    Data: ttcmod2
## 
## REML criterion at convergence: 27143.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6607 -0.2616 -0.2092 -0.1117 12.3403 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  444.1   21.07   
##  Residual             2407.7   49.07   
## Number of obs: 2520, groups:  ID, 895
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               23.93461    5.77868 2050.46715   4.142 3.58e-05 ***
## Prediction_1              -0.06028    0.06648 2157.06908  -0.907    0.365    
## Prediction_1_confidence   -0.01959    0.04574 2085.81065  -0.428    0.668    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_1
## Predictin_1 -0.849       
## Prdctn_1_cn -0.517  0.039

TTC Start and Prediction 2

All observations

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ Prediction_2 + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 9920.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8233 -0.6072 -0.1479  0.4600  6.2899 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7455   0.8634  
##  Residual             1.5624   1.2499  
## Number of obs: 2773, groups:  ID, 912
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   1.851e+00  1.251e-01  2.550e+03  14.797   <2e-16 ***
## Prediction_2 -2.117e-03  1.738e-03  2.655e+03  -1.218    0.223    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_2 -0.954

Cut off 1 (< 2,000 mins)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_2 + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 34009.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.3378 -0.1654 -0.1170 -0.0695 14.9773 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  3116     55.82  
##  Residual             10136    100.68  
## Number of obs: 2771, groups:  ID, 912
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    45.0019     9.5285 2266.4700   4.723 2.47e-06 ***
## Prediction_2   -0.2639     0.1329 2387.6818  -1.986   0.0471 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_2 -0.959

Cut off 1 (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ Prediction_2 + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 9841.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9062 -0.6120 -0.1501  0.4676  3.8963 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7627   0.8733  
##  Residual             1.5045   1.2266  
## Number of obs: 2771, groups:  ID, 912
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   1.843e+00  1.238e-01  2.566e+03   14.89   <2e-16 ***
## Prediction_2 -2.097e-03  1.718e-03  2.672e+03   -1.22    0.222    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_2 -0.953

Cut off 2 (< 1,000 mins)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_2 + (1 | ID)
##    Data: ttcmod2
## 
## REML criterion at convergence: 29591.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7619 -0.2608 -0.2096 -0.1079 12.4951 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  446.5   21.13   
##  Residual             2332.0   48.29   
## Number of obs: 2755, groups:  ID, 910
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    22.20405    4.36924 2214.69146   5.082 4.05e-07 ***
## Prediction_2   -0.05327    0.06104 2282.36469  -0.873    0.383    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_2 -0.963

TTC Start and Prediction 2 (controlling for confidence)

All observations

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_2 + Prediction_2_confidence + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 33600.3
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -0.106 -0.061 -0.043 -0.026 44.979 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)      0     0.0   
##  Residual             446722   668.4   
## Number of obs: 2121, groups:  ID, 729
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)              7.061e+01  6.918e+01  2.118e+03   1.021    0.308
## Prediction_2             5.305e-03  8.259e-01  2.118e+03   0.006    0.995
## Prediction_2_confidence -5.962e-01  5.888e-01  2.118e+03  -1.013    0.311
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_2
## Predictin_2 -0.848       
## Prdctn_2_cn -0.543  0.068
## convergence code: 0
## boundary (singular) fit: see ?isSingular

All obs (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ Prediction_2 + Prediction_2_confidence + (1 |      ID)
##    Data: df
## 
## REML criterion at convergence: 7567.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5982 -0.6379 -0.1526  0.4473  6.3130 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.6027   0.7763  
##  Residual             1.5996   1.2648  
## Number of obs: 2121, groups:  ID, 729
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              1.918e+00  1.628e-01  1.847e+03  11.778   <2e-16 ***
## Prediction_2            -3.368e-03  1.915e-03  1.973e+03  -1.759   0.0788 .  
## Prediction_2_confidence -2.768e-03  1.417e-03  1.738e+03  -1.954   0.0509 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_2
## Predictin_2 -0.832       
## Prdctn_2_cn -0.554  0.071

Cut off 1 (< 2,000)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_2 + Prediction_2_confidence + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 25159.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7769 -0.1850 -0.1214 -0.0591 15.7424 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1408     37.52   
##  Residual             7213     84.93   
## Number of obs: 2119, groups:  ID, 729
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               35.20375   10.12268 1609.84737   3.478 0.000519 ***
## Prediction_2              -0.33299    0.11978 1747.99741  -2.780 0.005494 ** 
## Prediction_2_confidence    0.14589    0.08747 1433.61040   1.668 0.095557 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_2
## Predictin_2 -0.839       
## Prdctn_2_cn -0.551  0.070

Cut off 1 (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ Prediction_2 + Prediction_2_confidence + (1 |      ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 7488.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7117 -0.6341 -0.1560  0.4579  3.9557 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.6257   0.791   
##  Residual             1.5221   1.234   
## Number of obs: 2119, groups:  ID, 729
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              1.887e+00  1.609e-01  1.870e+03  11.730   <2e-16 ***
## Prediction_2            -3.318e-03  1.888e-03  1.994e+03  -1.757   0.0790 .  
## Prediction_2_confidence -2.407e-03  1.400e-03  1.773e+03  -1.719   0.0858 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_2
## Predictin_2 -0.831       
## Prdctn_2_cn -0.555  0.072

Cut off 2 (< 1,000)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_2 + Prediction_2_confidence + (1 | ID)
##    Data: ttcmod2
## 
## REML criterion at convergence: 22144.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0708 -0.2557 -0.1930 -0.0948 12.7357 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  368.5   19.20   
##  Residual             1803.8   42.47   
## Number of obs: 2110, groups:  ID, 728
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               25.80816    5.09991 1514.24961   5.061 4.69e-07 ***
## Prediction_2              -0.10193    0.06054 1676.66078  -1.684   0.0924 .  
## Prediction_2_confidence   -0.05748    0.04412 1315.16129  -1.303   0.1929    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Prdc_2
## Predictin_2 -0.838       
## Prdctn_2_cn -0.546  0.063

TTC Start and Prediction change

All observations

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ I(Prediction_1 - Prediction_2) + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 39697.5
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -0.276 -0.058 -0.049 -0.033 49.585 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)    342.3  18.5   
##  Residual             367008.7 605.8   
## Number of obs: 2537, groups:  ID, 895
## 
## Fixed effects:
##                                Estimate Std. Error       df t value Pr(>|t|)  
## (Intercept)                      31.828     12.762 1242.785   2.494   0.0128 *
## I(Prediction_1 - Prediction_2)    1.526      1.535 2508.266   0.995   0.3201  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## I(Pr_1-P_2) -0.330

All obs (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ I(Prediction_1 - Prediction_2) + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 9028.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8407 -0.6038 -0.1352  0.4589  6.3446 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7052   0.8398  
##  Residual             1.5357   1.2392  
## Number of obs: 2537, groups:  ID, 895
## 
## Fixed effects:
##                                 Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                    1.676e+00  3.928e-02 9.396e+02  42.666   <2e-16
## I(Prediction_1 - Prediction_2) 1.533e-03  3.591e-03 2.430e+03   0.427    0.669
##                                   
## (Intercept)                    ***
## I(Prediction_1 - Prediction_2)    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## I(Pr_1-P_2) -0.257

Cut off 1 (< 2,000)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ I(Prediction_1 - Prediction_2) + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 30623.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9795 -0.1818 -0.1553 -0.1017 14.3060 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1434     37.87   
##  Residual             9050     95.13   
## Number of obs: 2536, groups:  ID, 895
## 
## Fixed effects:
##                                 Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                    2.416e+01  2.414e+00 9.333e+02  10.009   <2e-16
## I(Prediction_1 - Prediction_2) 5.851e-02  2.582e-01 2.532e+03   0.227    0.821
##                                   
## (Intercept)                    ***
## I(Prediction_1 - Prediction_2)    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## I(Pr_1-P_2) -0.297

Cut off 1 (log)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start_log ~ I(Prediction_1 - Prediction_2) + (1 | ID)
##    Data: ttcmod
## 
## REML criterion at convergence: 8977
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9090 -0.6110 -0.1373  0.4657  3.9190 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7218   0.8496  
##  Residual             1.4918   1.2214  
## Number of obs: 2536, groups:  ID, 895
## 
## Fixed effects:
##                                 Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                    1.675e+00  3.926e-02 9.382e+02   42.65   <2e-16
## I(Prediction_1 - Prediction_2) 9.242e-04  3.553e-03 2.419e+03    0.26    0.795
##                                   
## (Intercept)                    ***
## I(Prediction_1 - Prediction_2)    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## I(Pr_1-P_2) -0.254

Cut off 2 (< 1,000)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ I(Prediction_1 - Prediction_2) + (1 | ID)
##    Data: ttcmod2
## 
## REML criterion at convergence: 27179.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6532 -0.2597 -0.2147 -0.1125 12.3280 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  438.3   20.94   
##  Residual             2409.0   49.08   
## Number of obs: 2524, groups:  ID, 895
## 
## Fixed effects:
##                                 Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                      18.3919     1.2751  841.9435  14.423   <2e-16
## I(Prediction_1 - Prediction_2)    0.0106     0.1345 2516.6537   0.079    0.937
##                                   
## (Intercept)                    ***
## I(Prediction_1 - Prediction_2)    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## I(Pr_1-P_2) -0.293