TTC Stats by Time Type
##
## Descriptive statistics by group
## group: ttc_Start
## vars n mean sd median trimmed mad min max range skew kurtosis
## X1 1 3014 52.7 757.36 4 7.51 5.93 0 30114 30114 34.57 1273.98
## se
## X1 13.8
## ------------------------------------------------------------
## group: ttc_End
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 3014 56.51 768.83 5 8.84 5.93 0 30115 30115 33.32 1201.7 14
## ------------------------------------------------------------
## group: TimetoComplete
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 3014 3.81 108.71 1 0.61 1.48 0 5884 5884 52.69 2838.52 1.98
TTC_Start by Exam
##
## Descriptive statistics by group
## group: 1
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 820 24.3 91.07 4 7.54 5.93 0 1248 1248 9.11 101.91 3.18
## ------------------------------------------------------------
## group: 2
## vars n mean sd median trimmed mad min max range skew kurtosis
## X1 1 898 71.89 1058.3 3 6.9 4.45 0 30114 30114 26.23 726.57
## se
## X1 35.32
## ------------------------------------------------------------
## group: 3
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 853 32 141.44 5 8.3 7.41 0 1918 1918 9.13 92.64 4.84
## ------------------------------------------------------------
## group: 4
## vars n mean sd median trimmed mad min max range skew kurtosis
## X1 1 443 106.26 1255.87 3 7.65 4.45 0 25833 25833 19.54 395
## se
## X1 59.67
PTQ Scores
## df$PTQscore
## n missing distinct Info Mean Gmd .05 .10
## 2978 36 72 0.999 27.63 17.04 4 8
## .25 .50 .75 .90 .95
## 16 27 38 48 53
##
## lowest : 0 1 2 3 4, highest: 67 68 70 71 75
Prediction 1
## df$Prediction_1
## n missing distinct Info Mean Gmd .05 .10
## 1975 1039 67 0.988 71.38 18.37 40 50
## .25 .50 .75 .90 .95
## 65 75 83 90 92
##
## lowest : 0 2 3 5 6, highest: 95 96 97 98 100
Prediction 2
## df$Prediction_2
## n missing distinct Info Mean Gmd .05 .10
## 2773 241 80 0.989 69.29 18.61 34 50
## .25 .50 .75 .90 .95
## 60 70 80 90 90
##
## lowest : 0 1 2 3 5, highest: 95 96 97 98 100
Are Predictions 1 and 2 different?
##
## Paired t-test
##
## data: df$Prediction_1 and df$Prediction_2
## t = 15.299, df = 1973, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 2.313603 2.993996
## sample estimates:
## mean of the differences
## 2.653799
TTC Start
## df$ttc_Start
## n missing distinct Info Mean Gmd .05 .10
## 3014 0 226 0.982 52.7 97.33 0 0
## .25 .50 .75 .90 .95
## 0 4 12 51 114
##
## lowest : 0 1 2 3 4, highest: 1998 4852 9298 25833 30114
##
## Value 0 500 1000 1500 2000 5000 9500 26000 30000
## Frequency 2948 40 10 10 2 1 1 1 1
## Proportion 0.978 0.013 0.003 0.003 0.001 0.000 0.000 0.000 0.000
##
## For the frequency table, variable is rounded to the nearest 500
TTC Start
## ttcmod$ttc_Start
## n missing distinct Info Mean Gmd .05 .10
## 3010 0 222 0.982 29.49 51.05 0.0 0.0
## .25 .50 .75 .90 .95
## 0.0 4.0 12.0 50.0 110.5
##
## lowest : 0 1 2 3 4, highest: 1569 1570 1607 1918 1998
TTC Start
## ttcmod2$ttc_Start
## n missing distinct Info Mean Gmd .05 .10
## 2989 0 201 0.982 19.99 32.62 0.0 0.0
## .25 .50 .75 .90 .95
## 0.0 4.0 11.0 47.0 94.8
##
## lowest : 0 1 2 3 4, highest: 553 626 670 696 785
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ PTQscore + (1 | ID)
## Data: df
##
## REML criterion at convergence: 46487.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.204 -0.090 -0.051 -0.009 50.472
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 0 0.0
## Residual 353488 594.5
## Number of obs: 2978, groups: ID, 919
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -10.1474 22.8475 2976.0000 -0.444 0.65698
## PTQscore 1.8753 0.7268 2976.0000 2.580 0.00992 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## PTQscore -0.879
## convergence code: 0
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ PTQscore + (1 | ID)
## Data: ttcmod
##
## REML criterion at convergence: 36703.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.0496 -0.1714 -0.1490 -0.0975 15.7959
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 1982 44.52
## Residual 11697 108.15
## Number of obs: 2975, groups: ID, 919
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 26.15788 5.20486 784.63189 5.026 6.22e-07 ***
## PTQscore 0.03798 0.16590 781.14008 0.229 0.819
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## PTQscore -0.878
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ PTQscore + (1 | ID)
## Data: ttcmod2
##
## REML criterion at convergence: 31920.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.4193 -0.2753 -0.2224 -0.1155 12.1811
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 392.9 19.82
## Residual 2510.9 50.11
## Number of obs: 2958, groups: ID, 918
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 23.13246 2.38361 851.11229 9.705 <2e-16 ***
## PTQscore -0.13755 0.07604 848.61786 -1.809 0.0708 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## PTQscore -0.878
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_1 + (1 | ID)
## Data: df
##
## REML criterion at convergence: 31375.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.074 -0.056 -0.047 -0.030 43.997
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 67.37 8.208
## Residual 466946.85 683.335
## Number of obs: 1975, groups: ID, 718
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -2.7701 65.1107 1726.7023 -0.043 0.966
## Prediction_1 0.5330 0.8864 1724.3941 0.601 0.548
##
## Correlation of Fixed Effects:
## (Intr)
## Predictin_1 -0.972
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_1 + (1 | ID)
## Data: ttcmod
##
## REML criterion at convergence: 23370.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.3596 -0.1844 -0.1263 -0.0645 16.0821
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 1110 33.32
## Residual 7154 84.58
## Number of obs: 1974, groups: ID, 718
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 47.7142 8.9434 1722.7815 5.335 1.08e-07 ***
## Prediction_1 -0.3862 0.1216 1750.2761 -3.175 0.00153 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## Predictin_1 -0.966
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_1 + (1 | ID)
## Data: ttcmod2
##
## REML criterion at convergence: 20671.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0347 -0.2551 -0.1923 -0.1001 12.7025
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 360.9 19.00
## Residual 1851.1 43.02
## Number of obs: 1966, groups: ID, 718
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 24.53339 4.67745 1613.02485 5.245 1.77e-07 ***
## Prediction_1 -0.12683 0.06357 1660.32089 -1.995 0.0462 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## Predictin_1 -0.965
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_1 + Prediction_1_confidence + (1 | ID)
## Data: df
##
## REML criterion at convergence: 31300
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.099 -0.059 -0.043 -0.023 43.914
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 329.9 18.16
## Residual 468010.4 684.11
## Number of obs: 1970, groups: ID, 718
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -30.1631 78.1155 1677.4716 -0.386 0.699
## Prediction_1 0.5755 0.8946 1714.3367 0.643 0.520
## Prediction_1_confidence 0.4024 0.6264 1626.9351 0.642 0.521
##
## Correlation of Fixed Effects:
## (Intr) Prdc_1
## Predictin_1 -0.852
## Prdctn_1_cn -0.544 0.071
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_1 + Prediction_1_confidence + (1 | ID)
## Data: ttcmod
##
## REML criterion at convergence: 23318.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.3421 -0.1827 -0.1256 -0.0668 16.0443
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 1109 33.30
## Residual 7176 84.71
## Number of obs: 1969, groups: ID, 718
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 44.74976 10.76264 1688.96007 4.158 3.37e-05 ***
## Prediction_1 -0.38684 0.12278 1740.79744 -3.151 0.00166 **
## Prediction_1_confidence 0.04933 0.08657 1670.50743 0.570 0.56886
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Prdc_1
## Predictin_1 -0.847
## Prdctn_1_cn -0.548 0.075
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_1 + Prediction_1_confidence + (1 | ID)
## Data: ttcmod2
##
## REML criterion at convergence: 20624.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0307 -0.2608 -0.1885 -0.0912 12.6802
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 369.9 19.23
## Residual 1847.0 42.98
## Number of obs: 1961, groups: ID, 718
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 28.73640 5.60436 1577.65059 5.128 3.3e-07 ***
## Prediction_1 -0.13523 0.06414 1657.76809 -2.108 0.0351 *
## Prediction_1_confidence -0.06020 0.04506 1558.47072 -1.336 0.1817
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Prdc_1
## Predictin_1 -0.847
## Prdctn_1_cn -0.542 0.068
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_2 + (1 | ID)
## Data: df
##
## REML criterion at convergence: 43242.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.182 -0.064 -0.059 -0.047 50.929
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 803.5 28.35
## Residual 347136.8 589.18
## Number of obs: 2773, groups: ID, 912
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.680e+01 4.638e+01 2.188e+03 0.793 0.428
## Prediction_2 2.352e-02 6.494e-01 2.186e+03 0.036 0.971
##
## Correlation of Fixed Effects:
## (Intr)
## Predictin_2 -0.970
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_2 + (1 | ID)
## Data: ttcmod
##
## REML criterion at convergence: 34009.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.3378 -0.1654 -0.1170 -0.0695 14.9773
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 3116 55.82
## Residual 10136 100.68
## Number of obs: 2771, groups: ID, 912
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 45.0019 9.5285 2266.4700 4.723 2.47e-06 ***
## Prediction_2 -0.2639 0.1329 2387.6818 -1.986 0.0471 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## Predictin_2 -0.959
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_2 + (1 | ID)
## Data: ttcmod2
##
## REML criterion at convergence: 29591.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.7619 -0.2608 -0.2096 -0.1079 12.4951
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 446.5 21.13
## Residual 2332.0 48.29
## Number of obs: 2755, groups: ID, 910
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 22.20405 4.36924 2214.69146 5.082 4.05e-07 ***
## Prediction_2 -0.05327 0.06104 2282.36469 -0.873 0.383
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## Predictin_2 -0.963
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_2 + Prediction_2_confidence + (1 | ID)
## Data: df
##
## REML criterion at convergence: 33600.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.106 -0.061 -0.043 -0.026 44.979
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 0 0.0
## Residual 446722 668.4
## Number of obs: 2121, groups: ID, 729
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 7.061e+01 6.918e+01 2.118e+03 1.021 0.308
## Prediction_2 5.305e-03 8.259e-01 2.118e+03 0.006 0.995
## Prediction_2_confidence -5.962e-01 5.888e-01 2.118e+03 -1.013 0.311
##
## Correlation of Fixed Effects:
## (Intr) Prdc_2
## Predictin_2 -0.848
## Prdctn_2_cn -0.543 0.068
## convergence code: 0
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_2 + Prediction_2_confidence + (1 | ID)
## Data: ttcmod
##
## REML criterion at convergence: 25159.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.7769 -0.1850 -0.1214 -0.0591 15.7424
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 1408 37.52
## Residual 7213 84.93
## Number of obs: 2119, groups: ID, 729
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 35.20375 10.12268 1609.84737 3.478 0.000519 ***
## Prediction_2 -0.33299 0.11978 1747.99741 -2.780 0.005494 **
## Prediction_2_confidence 0.14589 0.08747 1433.61040 1.668 0.095557 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Prdc_2
## Predictin_2 -0.839
## Prdctn_2_cn -0.551 0.070
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ Prediction_2 + Prediction_2_confidence + (1 | ID)
## Data: ttcmod2
##
## REML criterion at convergence: 22144.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0708 -0.2557 -0.1930 -0.0948 12.7357
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 368.5 19.20
## Residual 1803.8 42.47
## Number of obs: 2110, groups: ID, 728
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 25.80816 5.09991 1514.24961 5.061 4.69e-07 ***
## Prediction_2 -0.10193 0.06054 1676.66078 -1.684 0.0924 .
## Prediction_2_confidence -0.05748 0.04412 1315.16129 -1.303 0.1929
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Prdc_2
## Predictin_2 -0.838
## Prdctn_2_cn -0.546 0.063
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ I(Prediction_1 - Prediction_2) + (1 | ID)
## Data: df
##
## REML criterion at convergence: 31358.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.158 -0.054 -0.043 -0.029 43.979
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 202.5 14.23
## Residual 466908.1 683.31
## Number of obs: 1974, groups: ID, 718
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 30.120 16.276 1017.721 1.851 0.0645 .
## I(Prediction_1 - Prediction_2) 1.949 1.997 1949.057 0.976 0.3291
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## I(Pr_1-P_2) -0.326
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ I(Prediction_1 - Prediction_2) + (1 | ID)
## Data: ttcmod
##
## REML criterion at convergence: 23367.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.3307 -0.1736 -0.1459 -0.0952 16.0934
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 1147 33.86
## Residual 7171 84.68
## Number of obs: 1973, groups: ID, 718
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.002e+01 2.425e+00 7.610e+02 8.257 6.61e-16
## I(Prediction_1 - Prediction_2) 9.943e-02 2.658e-01 1.971e+03 0.374 0.708
##
## (Intercept) ***
## I(Prediction_1 - Prediction_2)
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## I(Pr_1-P_2) -0.295
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ttc_Start ~ I(Prediction_1 - Prediction_2) + (1 | ID)
## Data: ttcmod2
##
## REML criterion at convergence: 20664.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0374 -0.2498 -0.2027 -0.1060 12.7068
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 363.9 19.08
## Residual 1854.2 43.06
## Number of obs: 1965, groups: ID, 718
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 15.5599 1.2762 508.1941 12.192 <2e-16
## I(Prediction_1 - Prediction_2) -0.0103 0.1371 1958.7956 -0.075 0.94
##
## (Intercept) ***
## I(Prediction_1 - Prediction_2)
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## I(Pr_1-P_2) -0.289