library(readr)
library(xts)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
etf4 <- read_csv('myetf4.csv')
## Parsed with column specification:
## cols(
## Index = col_date(format = ""),
## `0050` = col_double(),
## `0056` = col_double(),
## `006205` = col_double(),
## `00646` = col_double()
## )
str(etf4)
## tibble [751 × 5] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ Index : Date[1:751], format: "2015-12-14" "2015-12-15" ...
## $ 0050 : num [1:751] 53.3 53.3 54.1 54.8 54.5 ...
## $ 0056 : num [1:751] 18.2 18.4 18.6 18.8 18.9 ...
## $ 006205: num [1:751] 31.1 31.6 31.6 32.2 32.2 ...
## $ 00646 : num [1:751] 19.6 19.6 19.9 20.1 19.9 ...
## - attr(*, "spec")=
## .. cols(
## .. Index = col_date(format = ""),
## .. `0050` = col_double(),
## .. `0056` = col_double(),
## .. `006205` = col_double(),
## .. `00646` = col_double()
## .. )
head(etf4)
## # A tibble: 6 x 5
## Index `0050` `0056` `006205` `00646`
## <date> <dbl> <dbl> <dbl> <dbl>
## 1 2015-12-14 53.3 18.2 31.1 19.6
## 2 2015-12-15 53.3 18.4 31.6 19.6
## 3 2015-12-16 54.1 18.6 31.6 19.9
## 4 2015-12-17 54.8 18.8 32.2 20.0
## 5 2015-12-18 54.5 19.0 32.2 19.8
## 6 2015-12-21 54.4 19.0 33 19.6
library(magrittr)
library(PerformanceAnalytics)
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
etf4.xts <- xts(etf4[,-1], order.by = etf4$Index)
head(etf4.xts)
## 0050 0056 006205 00646
## 2015-12-14 53.29 18.25 31.06 19.61
## 2015-12-15 53.33 18.38 31.59 19.63
## 2015-12-16 54.14 18.56 31.60 19.89
## 2015-12-17 54.77 18.81 32.23 20.05
## 2015-12-18 54.50 18.95 32.18 19.85
## 2015-12-21 54.41 19.02 33.00 19.64
etf.ret <- etf4.xts %>% Return.calculate() %>% na.omit()
head(etf.ret)
## 0050 0056 006205 00646
## 2015-12-15 0.0007506099 0.007123288 0.0170637476 0.001019888
## 2015-12-16 0.0151884493 0.009793254 0.0003165559 0.013245033
## 2015-12-17 0.0116364980 0.013469828 0.0199367089 0.008044243
## 2015-12-18 -0.0049297060 0.007442850 -0.0015513497 -0.009975062
## 2015-12-21 -0.0016513761 0.003693931 0.0254816656 -0.010579345
## 2015-12-22 0.0023892667 -0.003680336 0.0030303030 0.004073320
mean(etf.ret)
## [1] 0.0002228601
cov(etf.ret)
## 0050 0056 006205 00646
## 0050 7.837060e-05 4.559164e-05 4.467258e-05 3.663388e-05
## 0056 4.559164e-05 4.526413e-05 2.673674e-05 2.353543e-05
## 006205 4.467258e-05 2.673674e-05 1.304184e-04 2.910367e-05
## 00646 3.663388e-05 2.353543e-05 2.910367e-05 5.902892e-05
etf4.mon.ret <- etf4.xts %>% to.monthly(indexAt = 'lastof', OHLC = FALSE) %>%
Return.calculate() %>% na.omit()
head(etf4.mon.ret)
## 0050 0056 006205 00646
## 2016-01-31 -0.01981651 -0.013785790 -0.173070915 -0.038883350
## 2016-02-29 0.02864096 0.043548387 -0.027578391 -0.003630705
## 2016-03-31 0.05550500 -0.002575992 0.082750583 0.026028110
## 2016-04-30 -0.04724138 -0.037190083 -0.024757804 0.009639777
## 2016-05-31 0.02515382 0.016630901 0.004415011 0.022110553
## 2016-06-30 0.03636364 0.029551451 -0.025641026 -0.026057030