library(ISLR)
## Warning: package 'ISLR' was built under R version 4.0.3
library(boot)
## Warning: package 'boot' was built under R version 4.0.4
library(MASS)
#Question 3 k-fold cross-validation
3a. Explain how k-fold cross-validation is implemented.
The data is divided into K different parts (K = 5 or K = 10). We then remove the first part, fit the model on the remaining K-1 parts, and see how good the predicitions are. This process is repeated K different times taking out a different part each time. The k-fold cross-validation estimate is computed by averaging these values.
3b. What are the advantages and disadvantages of k-fold cross-validation relative to: i. The validation set approach? ii. LOOCV?
The validation set approach is simple and easy to implement, but the MSE can be higly variable and only a subset of observations are used to fit the model. LOOCV has less bias and produces a less variable MSE. However, LOOCV has higher variance than k-fold cross-validation. K-folds is typically used more because there is evidence that it yields test error rate estimates that suffer from neither from excessively high bias, nor from very high variance.
#Question 5
data("Default")
5A.
set.seed(3)
glm_model_1 = glm(default ~ income + balance, data = Default, family = "binomial" )
5B.
train = sample(1:1000, 500)
glm_model_2 = glm(default ~ income + balance, data = Default, subset = train, family = "binomial")
preds = predict(glm_model_2, Default[-train,], type = 'response') #taking away data/observations used in train
pred_class = ifelse(preds > .05, "Yes", "No")
mean(pred_class!=Default[-train, 'default'])
## [1] 0.1197895
5C
train1 = sample(1:1000, 500)
glm_model_3 = glm(default ~ income + balance, data = Default, subset = train1, family = "binomial")
preds = predict(glm_model_3, Default[-train1,], type = 'response') #taking away data/observations used in train
pred_class = ifelse(preds > .05, "Yes", "No")
mean(pred_class!=Default[-train1, 'default'])
## [1] 0.1265263
train2 = sample(1:1000, 500)
glm_model_4 = glm(default ~ income + balance, data = Default, subset = train2, family = "binomial")
preds = predict(glm_model_3, Default[-train2,], type = 'response') #taking away data/observations used in train
pred_class = ifelse(preds > .05, "Yes", "No")
mean(pred_class!=Default[-train2, 'default'])
## [1] 0.1274737
train3 = sample(1:1000, 500)
glm_model_5 = glm(default ~ income + balance, data = Default, subset = train3, family = "binomial")
preds = predict(glm_model_5, Default[-train3,], type = 'response') #taking away data/observations used in train
pred_class = ifelse(preds > .05, "Yes", "No")
mean(pred_class!=Default[-train3, 'default'])
## [1] 0.1257895
5D
train = sample(1:1000, 500)
glm_model_6 = glm(default ~., data = Default, subset = train, family = "binomial")
preds = predict(glm_model_6, Default[-train,], type = 'response') #taking away data/observations used in train
pred_class = ifelse(preds > .05, "Yes", "No")
mean(pred_class!=Default[-train, 'default'])
## [1] 0.1057895
Adding students seems to reduce the error a but it is not a substantial difference
#Question 6
set.seed(1)
6A
glm_model_7 = glm(default ~ income + balance, data = Default, family = "binomial")
summary(glm_model_7)
##
## Call:
## glm(formula = default ~ income + balance, family = "binomial",
## data = Default)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4725 -0.1444 -0.0574 -0.0211 3.7245
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.154e+01 4.348e-01 -26.545 < 2e-16 ***
## income 2.081e-05 4.985e-06 4.174 2.99e-05 ***
## balance 5.647e-03 2.274e-04 24.836 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1579.0 on 9997 degrees of freedom
## AIC: 1585
##
## Number of Fisher Scoring iterations: 8
6B
boot.fn = function(data, index) {
return(coef(glm(default ~ income + balance,data=data,subset=index, family = "binomial")))
}
set.seed(1)
boot.fn(Default, sample(1:1000, 500, replace = T))
## (Intercept) income balance
## -1.029272e+01 1.558656e-05 5.236697e-03
6C
boot(Default, boot.fn, R=1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Default, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* -1.154047e+01 -3.933672e-02 4.343265e-01
## t2* 2.080898e-05 1.671659e-07 4.867306e-06
## t3* 5.647103e-03 1.850346e-05 2.298227e-04
6D
The estimations used with the glm() and bootstrap are similar.
#Question 9
data(Boston)
9A
medv_mean = mean(Boston$medv)
medv_mean
## [1] 22.53281
9B
medv_error = sd(Boston$medv)/sqrt(length(Boston$medv))
medv_error
## [1] 0.4088611
9C
set.seed(1)
boot_fn = function(data, index) return(mean(data[index]))
boot(Boston$medv, boot_fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Boston$medv, statistic = boot_fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 22.53281 0.007650791 0.4106622
The standard error in part B are similar.
9D
t.test(Boston$medv)
##
## One Sample t-test
##
## data: Boston$medv
## t = 55.111, df = 505, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 21.72953 23.33608
## sample estimates:
## mean of x
## 22.53281
ci = c(medv_mean - 2 * 0.41067, medv_mean + 2 * 0.41067)
ci
## [1] 21.71147 23.35415
The estimates from my bootstrap and the t-test are similar. The confidence interval for the t-test is 21.73, 23.34 and the confidence interval using the estimate for the bootstrap is 21.72, 23.35.
9E
medv_median = median(Boston$medv)
medv_median
## [1] 21.2
9F
set.seed(1)
boot_fn_med = function(data, index) return(median(data[index]))
boot(Boston$medv, boot_fn_med, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Boston$medv, statistic = boot_fn_med, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 21.2 0.02295 0.3778075
The error for the median is small.
9G
medv_quant = quantile(Boston$medv, c(0.1))
medv_quant
## 10%
## 12.75
set.seed(1)
boot_fn_quant = function(data, index) return(quantile(data[index], c(0.1)))
boot(Boston$medv, boot_fn_quant, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Boston$medv, statistic = boot_fn_quant, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 12.75 0.0339 0.4767526
The error from the bootstrap the 10th quantile is small.