LOADING DATA INTO R ENVIRONMENT

TRAINING THE LOGISTIC REGRESSION MODEL

Running the Training Model

## 
## Call:
## NULL
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.46589  -0.70600  -0.50971  -0.00012   2.63371  
## 
## Coefficients:
##                                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                         8.431e-01  3.607e-01   2.338 0.019407 *  
## DOJExtendedYes                     -1.892e-01  6.766e-02  -2.797 0.005159 ** 
## NoticePeriod                        2.063e-02  1.494e-03  13.811  < 2e-16 ***
## OfferedBandE1                      -1.296e+00  2.151e-01  -6.024 1.70e-09 ***
## OfferedBandE2                      -1.191e+00  2.375e-01  -5.014 5.33e-07 ***
## OfferedBandE3                      -1.278e+00  3.085e-01  -4.143 3.43e-05 ***
## PercentDifferenceCTC               -3.701e-03  1.940e-03  -1.907 0.056458 .  
## JoiningBonusYes                     2.820e-01  1.592e-01   1.772 0.076461 .  
## CandidateRelocateActualYes         -1.728e+01  1.929e+02  -0.090 0.928604    
## GenderMale                          1.390e-01  8.857e-02   1.570 0.116514    
## CandidateSourceDirect              -3.699e-01  7.435e-02  -4.976 6.51e-07 ***
## `CandidateSourceEmployee Referral` -7.322e-01  1.091e-01  -6.710 1.94e-11 ***
## RexInYrs                            3.258e-02  2.271e-02   1.434 0.151474    
## LOBBFSI                            -5.039e-01  1.326e-01  -3.801 0.000144 ***
## LOBCSMP                            -3.545e-01  1.612e-01  -2.200 0.027810 *  
## LOBERS                             -3.746e-01  1.210e-01  -3.095 0.001968 ** 
## LOBETS                             -5.497e-01  1.551e-01  -3.544 0.000394 ***
## LOBHealthcare                      -4.087e-01  2.742e-01  -1.490 0.136121    
## LOBINFRA                           -9.337e-01  1.374e-01  -6.795 1.08e-11 ***
## LOBMMS                             -1.797e+01  1.900e+03  -0.009 0.992455    
## LocationBangalore                  -1.257e-01  8.242e-02  -1.525 0.127319    
## LocationHyderabad                  -2.850e-01  1.739e-01  -1.639 0.101142    
## LocationKolkata                    -5.256e-01  2.923e-01  -1.798 0.072135 .  
## LocationMumbai                     -3.761e-01  2.655e-01  -1.416 0.156637    
## LocationNoida                      -3.708e-01  9.112e-02  -4.070 4.71e-05 ***
## LocationOthers                     -1.635e+01  1.758e+03  -0.009 0.992579    
## Age                                -3.235e-02  1.035e-02  -3.126 0.001769 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 6936.1  on 7196  degrees of freedom
## Residual deviance: 5987.9  on 7170  degrees of freedom
## AIC: 6041.9
## 
## Number of Fisher Scoring iterations: 17

Variable Importance in Logistic Regression Model

TESTING THE LOGISTIC REGRESSION MODEL

Confusion Matrix at 50% Cut-Off Probability

## Confusion Matrix and Statistics
## 
##            Reference
## Prediction  NotJoined Joined
##   NotJoined        22     22
##   Joined          314   1440
##                                           
##                Accuracy : 0.8131          
##                  95% CI : (0.7943, 0.8309)
##     No Information Rate : 0.8131          
##     P-Value [Acc > NIR] : 0.5146          
##                                           
##                   Kappa : 0.0758          
##                                           
##  Mcnemar's Test P-Value : <2e-16          
##                                           
##             Sensitivity : 0.06548         
##             Specificity : 0.98495         
##          Pos Pred Value : 0.50000         
##          Neg Pred Value : 0.82098         
##              Prevalence : 0.18687         
##          Detection Rate : 0.01224         
##    Detection Prevalence : 0.02447         
##       Balanced Accuracy : 0.52521         
##                                           
##        'Positive' Class : NotJoined       
## 
##    cutoff  Accuracy  Senstivity Specificity      kappa
## 1    0.00 0.1868743 1.000000000   0.0000000 0.00000000
## 2    0.05 0.3398220 0.994047619   0.1894665 0.07789773
## 3    0.10 0.4238042 0.946428571   0.3036936 0.11654740
## 4    0.15 0.5361513 0.857142857   0.4623803 0.17310632
## 5    0.20 0.6501669 0.758928571   0.6251710 0.25019061
## 6    0.25 0.7246941 0.556547619   0.7633379 0.26096459
## 7    0.30 0.7686318 0.351190476   0.8645691 0.22082121
## 8    0.35 0.7992214 0.255952381   0.9240766 0.21414371
## 9    0.40 0.8097887 0.160714286   0.9589603 0.16051506
## 10   0.45 0.8081201 0.092261905   0.9726402 0.09321214
## 11   0.50 0.8131257 0.065476190   0.9849521 0.07579336
## 12   0.55 0.8136819 0.032738095   0.9931601 0.04053051
## 13   0.60 0.8142380 0.008928571   0.9993160 0.01330853
## 14   0.65 0.8136819 0.002976190   1.0000000 0.00483103
## 15   0.70 0.8131257 0.000000000   1.0000000 0.00000000
## 16   0.75 0.8131257 0.000000000   1.0000000 0.00000000
## 17   0.80 0.8131257 0.000000000   1.0000000 0.00000000
## 18   0.85 0.8131257 0.000000000   1.0000000 0.00000000
## 19   0.90 0.8131257 0.000000000   1.0000000 0.00000000
## 20   0.95 0.8131257 0.000000000   1.0000000 0.00000000
## 21   1.00 0.8131257 0.000000000   1.0000000 0.00000000