Laporan 2 Praktikum Pemrograman Statistik - Tugas Satria June Adwendi
Link Rpubs : klik disini
Praktikum Pertemuan 4 - Grafik
Plot
•Generic function for plotting of Robjects.
•General Form plot(x, y, …)
•Possible type to be drawn
1.“p”for points
2.“l”for lines
3.“b”for both
4.“c”for the lines part alone of “b”
5.“o”for overplotted
6.“h”for histogram like
7.“s”for stair steps
8.“S”for other steps
9.“n”for no plotting
Pilihan Warna Grafik
•Numeric 1-8 (recycle)
•Character “colorname”(colors())
•Fungsirainbow(…), rgb(…)
•Package “colorspace”, “colourpicker”, "RColorBrewer“
•dll
Ilustrasi
#dasarplot
x <-1:40
y <-rnorm(40,5,1)
plot(x,y,type="p")plot(x,y,type="o")plot(x,y,type="n")plot(x,y,type="p",xlab="Sumbu x",ylab="Sumbu y",
main="Bilangan Acak Normal",col=2,pch=16)plot(x,y,type="p",xlab="Sumbu x",ylab="Sumbu y",
main="Bilangan Acak Normal",col=rainbow(40),
pch=16,cex=2,xlim=c(0,50),ylim=c(2.5,7.5))
#menambahkanamatan
x1 <-41:50
y1 <-rnorm(10,5,1)
points(x1,y1,cex=2)
#menambahkan garis
x2 <-rep(40.5,20)
y2 <-seq(min(c(y,y1)),max(c(y,y1)),length=20)
lines(x2,y2,col=4,lwd=2,lty=2)
abline(h=mean(y),col="red",lwd=2.5)
abline(a=2,b=1/10,col="maroon3",lwd=2,lty=2)
#menambahkan tanda panah
arrows(x0=30,y0=3.5,x1=40,y1=mean(y)-.1,lwd=2)
#menambahkan tulisan
text(x=29,y=3.3,labels="Titik potong",cex=0.7)
text(x=3,y=7.3,labels="Data awal",cex=0.7)
text(x=46,y=7.3,labels="Data baru",cex=0.7)Latihan 1
Could you explain what are these programs do for ?
•plot(sin,-pi, 2*pi)
Jawaban: Syntax ini akan menampilkan tabel sin dari nilai -pi sampai 2 kali pi
•plot(table(rpois(100,5)),type=“h”,col=“red”,lwd=1,main=“rpois(100,lambda=5)”)
Jawaban: Syntax ini akan menghasilkan histogram dari tabel rpois
Berikut hasil tabel jika dimasukan dalam R:
plot(sin,-pi, 2*pi)plot(table(rpois(100,5)),type="h",col="red",lwd=1,main="rpois(100,lambda=5)")Latihan 2
Create some programs to make the graph below
a1 <- 1:25
a2 <- rnorm(25,4,2)
plot(a1,a2,pch="w",main="W")Latihan 3
plot(a1,a2,type="n",main="W")
text(a1,a2,labels=paste("w",1:25,sep=""),col=rainbow(25),cex=0.8)Latihan 4
Create some programs to make the graph below, using 100 observation of 𝑋~𝜒2 (4)
x <- rchisq(100,df=4)
hist(x,freq=FALSE,ylim=c(0,0.2))
curve(dchisq(x,df=4),col=2,lty=2,lwd=2,add=TRUE)Latihan 5
Create 4 graph in one window from 100 random numbers which follow N(5,1)
windows()
yb<-rnorm(100,5,1)
split.screen(c(2,2))## [1] 1 2 3 4
screen(3)
boxplot(yb)
title("BoxplotBilangan Acak Normal",cex.main=0.7)
screen(4)
xb<-1:100
plot(xb,yb,type="l",lwd=2,col="blue")
title("LinePlot Bilangan Acak Normal",cex.main=0.7)
screen(2)
hist(yb,freq=FALSE,main=NULL,ylim=c(0,0.5))
x <-yb
curve(dnorm(x,5,1),col="red",lty=2,lwd=2,add=TRUE)
title("Histogram Bilangan Acak Normal",cex.main=0.7)
screen(1)
plot(xb,yb,pch=16,col=rainbow(100))
title("ScatterPlot Bilangan Acak Normal",cex.main=0.7)Pertemuan 5 - Pembangkitan Bilangan Acak
# pembangkitan bilangan acak
x <-rnorm(10) #x~N(0,1)
x1 <-rnorm(10,3,2) #x1~N(3,sd=2)
x2 <-rbinom(10,1,0.4) #x2~bernoulli(0.4)
# mencari nilai peluang kumulatif peubah acak
p1 <-pnorm(1.645) #P(Z<1.645)=0.95
p2 <-pnorm(1.96) #P(Z<1.975)=0.975
p3 <-pnorm(-1.96)
p4 <-pf(15,df1=10,df2=15)
# mencari nilai kuantil dari peluang peubah acak
q1 <-qnorm(0.975)
q2 <-qnorm(0.95,2,1) #X~N(2,1), P(X<x)=0.95
# mencari nilai density peubah acak
##plot density normal
a <-seq(-4,4,length=1000)
da <-dnorm(a)
plot(a,da)Tiga Metode Pembangkitan Bilangan Acak:
- Invers Transform Method
- Acceptance-Rejection Method
- Direct Transformation
Inverse Transform Method
Ide dasar
•0≤𝐹𝑥≤1 sehingga𝑈=𝐹𝑥~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1)
•Jika𝑋=𝐹−1(𝑢)maka𝑋~𝑓(𝑥)
Algoritme
•Tentukanfsk 𝐹𝑥darisebaranyang diinginkan
•Tentukan𝐹−1(𝑥)
•Bangkitkan𝑈~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1)
•Transformasi𝑋=𝐹−1(𝑢)
Keunggulan: bisa digunakan untuk berbagai sebaran(termasuksebarandiskret)
Kesulitan utama: memperolehkebalikandarifungsisebarankumulatif
Latihan 1
•Membangkitkan bilangan acak Eksponensial(lamda)
•X ~ Eksponensial(lamda)
•Algoritma:
•Bangkitkan U, bilangan acak Seragam (0, 1)
•Hitung X = –ln(1 –U) / lamda
•Ulangi berkali-kali sesuai dengan banyaknya bilangan yang diinginkan
#Eksponensial(lambda=3)
set.seed(10)
eks <-function(n,lambda){
U <-runif(n)
X <--log(1-U)/lambda
return(X)
}
yy1 <-eks(1000,3) #inverse transform method
yy2 <-rexp(1000,rate=3) #fungsi bawaan R
par(mfrow=c(1,2))
hist(yy1,main="Exp dari Inverse Transform")
hist(yy2,main="Exp dari fungsi rexp")Acceptance-Rejection Method
## Latihan 2
Bangkitkan bilangan acak yang memiliki fkp𝑓(y)=3y^2; 0<𝑦<1 menggunakan acceptance-rejection method!
ar <-function(n,x0,x1,f) {
xx <-seq(x0,x1,length=10000)
c<-max(f(xx))
terima <-0;iterasi <-0
hasil <-numeric(n)
while(terima<n) {
x <-runif(1,x0,x1)
y1<-runif(1,0,c)
y2<-f(x)
if(y1<=y2) {
terima <-terima+1
hasil[terima]<-x}
iterasi <-iterasi+1}
list(hasil=hasil,iterasi=iterasi)
}
set.seed(10)
f <-function(x) {3*x^2}
yyy <-ar(100,0,1,f)
yyy## $hasil
## [1] 0.8647212 0.7751099 0.8382877 0.7707715 0.5355970 0.8613824 0.2036477
## [8] 0.7979930 0.7438394 0.3443435 0.9837322 0.6935082 0.6331153 0.8880315
## [15] 0.7690405 0.6483695 0.8795432 0.9360689 0.7233519 0.7620444 0.9868082
## [22] 0.8760261 0.7240640 0.8140516 0.5588949 0.8900940 0.7456896 0.8480646
## [29] 0.8703302 0.8223331 0.8508123 0.7709219 0.8953595 0.5803863 0.5982260
## [36] 0.9235285 0.7367755 0.6898170 0.8301572 0.9293209 0.9095163 0.5347576
## [43] 0.3478601 0.8759762 0.7286815 0.8749293 0.6988356 0.8312562 0.5572238
## [50] 0.6647687 0.7400502 0.9806898 0.3800746 0.7553169 0.5184889 0.8879149
## [57] 0.9177773 0.8084086 0.8537441 0.4232184 0.7604306 0.3405763 0.3886568
## [64] 0.4774175 0.5387605 0.9485434 0.7124685 0.9081691 0.9457656 0.7716899
## [71] 0.6946655 0.5368832 0.8481593 0.8242752 0.5123742 0.3152032 0.9924487
## [78] 0.9327120 0.9892809 0.6283590 0.5254605 0.8810815 0.5291748 0.5765517
## [85] 0.7231807 0.8761180 0.3995670 0.8986123 0.9335217 0.7859216 0.7784128
## [92] 0.6955333 0.9060413 0.9916424 0.4729846 0.9770567 0.9386110 0.9959093
## [99] 0.8543663 0.8309547
##
## $iterasi
## [1] 322
#Diagram
par(mfrow=c(1,1))
hist(yyy$hasil, main="f(x)=3*x^2",prob=T)
x <-seq(0, 1, 0.01)
lines(x, f(x), lwd=2, col=4)Direct Tansformation
Memanfaatkan beberapa fungsi transformasi dari berbagai sebaran yang ada
•Contoh: •Jika X~𝑈0,1menggunakan 𝑌=𝑏−𝑎𝑋+𝑎maka 𝑌~𝑈(𝑎,𝑏) Membangkitkanbilanganacak𝑌~𝑈(3,5)𝑌=2𝑋+3 x <-runif(1000) y <-2*x+3
x <-runif(1000)
y <-2*x+3
y## [1] 4.595651 4.168212 3.865580 3.368448 3.685894 3.168929 4.232466 3.471525
## [9] 3.816635 4.432023 3.654097 3.025882 4.017800 3.645034 4.035468 4.220792
## [17] 4.369285 4.777494 4.474976 4.379829 3.045420 3.458973 3.489782 4.082726
## [25] 3.896056 4.563540 3.730657 3.726081 3.958200 3.236057 4.076578 3.582958
## [33] 4.210074 3.726026 4.420964 3.973593 4.783335 3.698059 4.224458 3.630964
## [41] 3.646383 3.750261 4.467030 3.371470 3.469069 4.693028 4.894643 4.280374
## [49] 3.537450 4.790113 4.299423 4.519895 4.965529 3.051509 3.303683 3.906797
## [57] 3.375193 4.141702 4.796323 3.377092 3.108475 3.419335 4.738254 4.080452
## [65] 4.969106 4.856840 4.331528 3.915997 4.770318 3.073207 4.697783 4.413223
## [73] 4.486807 4.246549 4.955789 4.387593 4.726321 3.386577 4.532412 4.993235
## [81] 3.161616 3.375557 3.197817 4.397423 3.332837 3.218048 3.082443 4.578633
## [89] 4.594420 4.758882 3.447881 4.580076 4.968844 3.084786 3.672106 3.884082
## [97] 3.995492 3.071297 4.311110 3.813428 3.714606 3.236832 3.667819 3.942326
## [105] 4.193309 4.102471 4.973566 4.951496 4.246684 3.942961 3.572900 4.492391
## [113] 3.137360 3.982451 4.322077 3.751640 3.597455 4.001769 3.725986 4.395659
## [121] 4.534990 4.707527 3.577784 4.937220 3.147125 3.566941 3.292801 3.264311
## [129] 3.494709 3.345439 3.539915 3.026146 4.941346 4.853478 3.884387 3.050453
## [137] 3.522547 3.310321 3.680943 4.031377 4.268245 4.580220 3.257111 3.599641
## [145] 4.052678 4.027126 4.030312 4.403521 4.642983 4.886053 4.967236 3.922478
## [153] 3.548622 3.377231 4.786665 4.642731 3.936669 4.018760 4.762696 3.363010
## [161] 4.971195 4.327953 4.315386 3.614140 3.460296 3.062097 3.050408 3.744086
## [169] 3.051171 4.354773 3.346706 3.725468 4.769000 4.526478 3.532470 3.834602
## [177] 3.894296 4.798221 3.986260 3.234679 3.645782 3.086577 4.859232 3.050443
## [185] 4.969942 3.187620 3.002687 4.369433 3.076397 4.112787 3.715231 3.806230
## [193] 4.291993 3.315377 3.217174 4.120446 4.365137 3.564720 4.782446 3.341252
## [201] 3.553095 4.455447 4.548107 3.554820 4.459492 4.290764 3.819135 3.092542
## [209] 3.480910 3.737291 4.781122 3.456868 4.871115 4.384660 4.821405 3.713408
## [217] 3.901560 3.308500 4.649646 4.521387 4.015555 4.857621 4.593943 4.782217
## [225] 3.760751 3.087453 3.952728 4.439325 4.686256 4.284194 3.168267 4.869526
## [233] 3.315281 4.150718 3.981427 4.437502 4.878076 4.042365 3.447635 4.644413
## [241] 4.685966 4.115470 4.216081 3.375351 3.935933 4.295949 3.366233 3.346195
## [249] 4.363890 3.628338 4.835012 3.815494 4.027718 4.390839 3.196155 4.508844
## [257] 4.755563 3.952660 3.127663 3.486304 3.011791 4.950004 3.479238 4.126829
## [265] 3.773781 3.515035 3.663339 3.868293 3.731539 4.564783 3.968643 4.505326
## [273] 4.624903 3.351114 3.718886 3.149059 3.466030 3.876820 4.920182 3.604485
## [281] 3.931436 3.851931 4.731431 4.749438 3.984699 3.443737 3.135317 4.509235
## [289] 4.993079 3.632973 3.457061 4.919519 4.713212 4.893936 3.974407 3.498106
## [297] 3.589225 3.288184 3.054149 4.625688 4.686465 3.231876 3.780065 4.845464
## [305] 3.211458 3.840869 4.788149 4.815876 3.847575 4.974608 4.638219 4.271901
## [313] 3.030907 4.954875 4.802814 3.227271 3.668571 3.904605 3.798721 4.781529
## [321] 4.815544 3.656805 4.598357 4.052858 3.142921 3.067473 3.537728 4.267681
## [329] 4.084502 4.700150 3.065181 4.197046 3.106003 4.154466 4.180102 4.051311
## [337] 4.643063 3.554346 3.740491 4.782274 4.801987 4.384187 4.045663 3.493019
## [345] 3.027529 3.214891 3.601037 3.660628 4.720207 4.644854 3.807896 4.375866
## [353] 3.363114 3.900362 3.385230 4.943052 4.615413 4.420358 3.496498 4.019566
## [361] 4.137517 3.663136 3.873324 3.399394 4.572513 4.569445 4.909801 4.239187
## [369] 4.785013 3.465037 4.023484 4.060217 4.902524 4.148773 4.742039 4.878590
## [377] 3.160793 4.536739 4.124574 3.323276 4.614337 3.178618 3.973487 4.737529
## [385] 4.659949 4.963217 4.741565 3.446988 4.306195 3.833228 4.293684 3.338345
## [393] 3.801240 3.163310 4.385805 4.209765 3.183583 4.442544 3.905830 4.058087
## [401] 3.526571 3.962961 4.502033 3.884139 3.765793 4.085434 4.469945 3.784377
## [409] 4.906737 3.246651 3.016395 3.021085 3.177066 4.960241 4.770640 3.963674
## [417] 4.804280 4.375579 3.952479 4.962703 3.493305 4.968655 3.146102 3.376815
## [425] 4.804378 3.767460 4.760473 3.138694 4.612437 4.526004 3.021634 3.744841
## [433] 3.163980 3.631048 3.165785 3.683686 3.283250 3.737113 3.346487 4.695052
## [441] 3.557584 3.530328 4.699201 4.113038 4.353739 4.803387 3.232695 4.243600
## [449] 4.571575 4.263495 3.076344 3.388704 3.556719 3.713973 3.199713 3.681986
## [457] 3.754938 3.085458 3.484692 4.643762 3.008197 4.676406 4.590641 3.282191
## [465] 4.241101 3.690541 3.953717 4.524971 4.645850 3.423704 3.826890 4.164745
## [473] 4.679355 4.809141 3.054438 3.643403 3.292472 3.574535 4.626748 3.457478
## [481] 4.999602 4.428614 4.541616 4.046089 3.835642 4.207878 4.142799 3.668253
## [489] 4.846237 3.173952 3.657645 3.948126 4.286523 3.747317 4.513459 4.484815
## [497] 4.649410 4.672014 4.864272 4.989662 4.753757 3.485692 4.179418 4.599828
## [505] 3.195160 4.490126 3.949943 4.482142 4.679428 3.352180 3.314449 3.395827
## [513] 3.452662 3.902255 4.918844 3.761364 3.234991 3.361696 3.676700 3.658317
## [521] 3.116457 3.073477 3.779114 4.891029 3.558328 3.567479 4.490951 3.030119
## [529] 3.523791 4.140343 3.589872 4.926635 4.658660 4.447436 3.915916 3.447092
## [537] 3.708353 3.577917 3.860111 3.520046 4.217823 3.469950 4.186825 4.009659
## [545] 4.960761 4.663596 3.197030 3.339365 4.432129 4.634356 4.925802 4.272933
## [553] 4.168626 4.954075 4.623677 4.177371 3.367073 3.954232 3.956338 4.033501
## [561] 3.174859 4.450297 4.248931 3.222602 4.837201 4.414659 3.225810 3.461793
## [569] 3.838243 3.014711 3.120554 3.293754 4.395576 4.572241 3.675333 3.467193
## [577] 3.087367 3.367471 4.986978 4.200105 4.381540 3.404015 3.500395 3.453344
## [585] 3.375089 3.230314 3.083384 4.929557 4.454521 3.762533 3.383604 4.935798
## [593] 4.531758 3.546295 3.975483 3.449228 3.906684 3.617831 4.078245 3.133104
## [601] 3.498497 3.095699 3.960723 3.293161 3.574989 3.776852 4.983567 4.034965
## [609] 3.928389 3.297234 3.411277 4.795526 3.774142 3.597192 4.104445 3.426783
## [617] 3.288198 4.798747 4.536796 4.074385 4.253072 3.400720 3.727104 4.490435
## [625] 4.800692 3.538431 3.310350 3.387320 3.610006 4.521122 3.867236 4.123544
## [633] 3.762143 3.619385 4.957283 4.589340 4.632362 3.734138 4.107727 3.190931
## [641] 3.840473 3.063554 3.419761 4.101204 4.480505 3.335551 3.736374 4.556347
## [649] 3.083326 4.414239 4.206617 3.770268 3.359301 3.676023 3.569652 3.155290
## [657] 3.386589 3.570812 4.590909 4.524650 3.423634 3.188275 4.670851 4.008845
## [665] 4.993068 3.570497 3.892304 4.282780 3.915558 3.453340 3.178928 3.771504
## [673] 4.342322 3.476966 4.663507 3.074694 3.809217 3.975703 4.066113 4.942717
## [681] 3.717558 4.438593 4.261515 4.868353 4.209460 4.378453 4.997412 4.186681
## [689] 3.730297 3.844101 4.712017 4.604720 3.465583 4.094532 4.045095 4.956168
## [697] 4.360094 3.730014 3.709412 3.571868 4.166459 3.285475 4.802813 3.410562
## [705] 3.103771 4.930671 3.433312 3.629858 4.390588 3.646413 4.776634 3.443542
## [713] 4.239717 3.058778 4.166561 4.556808 4.360835 3.151751 3.056866 4.371048
## [721] 4.784433 4.894728 4.304202 4.876747 3.975111 3.056864 3.105490 4.607493
## [729] 4.348202 3.825592 3.489664 4.047145 4.840111 4.381992 3.088879 4.344586
## [737] 4.152450 4.382661 3.482083 3.152124 3.418771 3.672935 3.523344 4.098084
## [745] 4.917674 3.125032 3.023792 3.352062 3.106859 4.448480 4.486721 4.953225
## [753] 4.633411 3.515097 4.549516 3.502145 3.820571 3.471089 3.486448 4.379599
## [761] 4.387598 3.217931 4.462260 3.665351 3.095538 3.702529 3.736679 4.759911
## [769] 4.387971 3.180551 3.089623 4.191134 3.836067 3.263177 3.690190 3.049972
## [777] 3.234589 4.124177 4.349138 4.343698 4.164451 4.373908 3.226232 3.741214
## [785] 4.557165 4.857548 3.549154 3.417801 3.118530 3.808807 3.319413 4.696115
## [793] 4.725716 4.473617 4.640932 4.620981 3.439493 4.008431 3.634191 3.146057
## [801] 3.258180 3.486712 3.668043 3.569197 3.401142 3.357883 3.547849 4.657281
## [809] 3.438995 3.970205 3.372129 4.077384 3.971496 4.567775 3.760992 4.005694
## [817] 3.002594 3.857844 3.044588 3.937043 3.963014 4.170063 3.719193 3.152707
## [825] 3.845376 3.627579 3.129907 3.438821 3.372375 4.916585 3.388299 4.098514
## [833] 4.419020 4.473513 3.850693 3.426815 3.745070 3.338124 3.591310 3.336311
## [841] 3.710282 4.104672 4.530202 4.209216 4.772064 4.567791 4.763648 3.686085
## [849] 4.497901 4.330342 4.760206 3.460885 4.149536 3.826504 4.382265 4.910413
## [857] 3.051461 4.665443 4.326053 3.222537 4.759395 3.248831 3.148112 4.744803
## [865] 3.713805 3.605298 3.543323 3.536265 4.250934 4.321638 4.728602 3.304895
## [873] 3.684716 4.978813 4.984080 4.507777 4.753503 4.254134 4.264930 3.120719
## [881] 4.351738 3.016930 3.753487 3.608348 4.839784 3.526077 3.681608 3.255639
## [889] 3.929795 3.787575 4.254725 3.102797 4.764022 3.313598 3.798330 3.102817
## [897] 4.623546 4.145303 3.625152 4.554414 3.466996 4.238963 3.234733 3.263493
## [905] 3.590617 4.564968 4.095003 3.331838 4.812556 4.309262 4.851002 3.554039
## [913] 4.196659 3.473372 4.585330 4.985140 3.462578 4.505041 4.203711 4.297979
## [921] 3.393737 4.094990 4.170738 4.369566 3.478194 4.223525 4.522832 3.555257
## [929] 3.654607 4.375362 3.735138 3.017994 4.395007 3.065458 4.078626 3.762759
## [937] 4.542933 3.843434 3.780590 4.038624 4.410163 3.913584 3.929607 4.931056
## [945] 3.455814 4.747601 3.118741 4.301843 4.721172 3.875542 3.019229 3.604486
## [953] 4.163448 3.752417 4.555575 3.242685 3.033581 3.864228 4.397758 3.879327
## [961] 3.962973 3.970135 3.250362 3.526578 4.470872 3.082856 3.467550 3.220450
## [969] 3.699188 3.228758 3.501766 3.592546 4.632085 4.836780 4.624836 4.725689
## [977] 4.303669 4.760358 3.353661 4.767130 4.544235 4.009297 4.379276 4.318141
## [985] 3.982503 3.481575 4.443483 4.440020 4.550645 3.715663 3.621288 4.462299
## [993] 3.463366 3.380312 3.999186 4.768694 4.579657 4.360228 4.732703 3.965204
Pembangkitan Bilangan Acak untuk Model Regresi
set.seed(123)
X1 <-runif(25,10,25)
X2 <-runif(25,90,200)
Y <-10 + 2.3*X1 + 0.7*X2 + rnorm(25,0,9)
model1 <-lm(Y~X1)
summary(model1)##
## Call:
## lm(formula = Y ~ X1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29.991 -17.738 -2.632 17.896 33.171
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 131.846 19.741 6.679 8.18e-07 ***
## X1 1.049 1.015 1.033 0.312
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.42 on 23 degrees of freedom
## Multiple R-squared: 0.04433, Adjusted R-squared: 0.002775
## F-statistic: 1.067 on 1 and 23 DF, p-value: 0.3124
model2 <-lm(Y~X2)
summary(model2)##
## Call:
## lm(formula = Y ~ X2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -31.804 -4.850 -1.606 10.011 20.569
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 70.83913 13.86879 5.108 3.57e-05 ***
## X2 0.58213 0.09767 5.960 4.46e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.38 on 23 degrees of freedom
## Multiple R-squared: 0.607, Adjusted R-squared: 0.5899
## F-statistic: 35.52 on 1 and 23 DF, p-value: 4.464e-06
model3 <-lm(Y~X1+X2)
summary(model3)##
## Call:
## lm(formula = Y ~ X1 + X2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.8291 -4.5994 -0.4576 5.0602 20.5307
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.62881 13.40229 -0.047 0.963
## X1 2.72951 0.40701 6.706 9.67e-07 ***
## X2 0.72459 0.06105 11.869 4.91e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.427 on 22 degrees of freedom
## Multiple R-squared: 0.8709, Adjusted R-squared: 0.8592
## F-statistic: 74.21 on 2 and 22 DF, p-value: 1.66e-10
model4 <-lm(Y~X1:X2)
summary(model4)##
## Call:
## lm(formula = Y ~ X1:X2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20.929 -7.009 -1.430 2.856 37.374
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 80.645221 10.481428 7.694 8.32e-08 ***
## X1:X2 0.027491 0.003929 6.997 3.94e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.97 on 23 degrees of freedom
## Multiple R-squared: 0.6804, Adjusted R-squared: 0.6665
## F-statistic: 48.96 on 1 and 23 DF, p-value: 3.942e-07
model5 <-lm(Y~X1*X2)
summary(model5)##
## Call:
## lm(formula = Y ~ X1 * X2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.4425 -4.5808 -0.6702 4.6431 20.2409
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.625896 37.941991 0.306 0.7623
## X1 2.063573 1.967526 1.049 0.3062
## X2 0.635870 0.263687 2.411 0.0251 *
## X1:X2 0.004905 0.014165 0.346 0.7326
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.6 on 21 degrees of freedom
## Multiple R-squared: 0.8716, Adjusted R-squared: 0.8533
## F-statistic: 47.53 on 3 and 21 DF, p-value: 1.548e-09
R2 <-matrix(c(summary(model1)$r.squared,summary(model1)$adj.r.squared,summary(model2)$r.squared,summary(model2)$adj.r.squared,summary(model3)$r.squared,summary(model3)$adj.r.squared,summary(model4)$r.squared,summary(model4)$adj.r.squared,summary(model5)$r.squared,summary(model5)$adj.r.squared),5,byrow=T)
colnames(R2)<-c("R2","R2.adj"); R2*100## R2 R2.adj
## [1,] 4.432592 0.2774876
## [2,] 60.699195 58.9904640
## [3,] 87.090357 85.9167529
## [4,] 68.036265 66.6465370
## [5,] 87.163648 85.3298839
coef(model3)## (Intercept) X1 X2
## -0.6288095 2.7295126 0.7245911
confint(model3)## 2.5 % 97.5 %
## (Intercept) -28.4234482 27.1658292
## X1 1.8854322 3.5735929
## X2 0.5979779 0.8512044
cbind(coef(model3),confint(model3))## 2.5 % 97.5 %
## (Intercept) -0.6288095 -28.4234482 27.1658292
## X1 2.7295126 1.8854322 3.5735929
## X2 0.7245911 0.5979779 0.8512044
anova(model3)## Analysis of Variance Table
##
## Response: Y
## Df Sum Sq Mean Sq F value Pr(>F)
## X1 1 536.4 536.4 7.5538 0.01173 *
## X2 1 10002.4 10002.4 140.8614 4.911e-11 ***
## Residuals 22 1562.2 71.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
par(mfrow=c(2,2)); plot(model3)Demikian, Terima Kasih
Satria June Adwendi, IPB University, sjadwendi@apps.ipb.ac.id↩︎