Data source: https://docs.google.com/spreadsheets/d/1VO7GpObj5UEIBdmTKQJqq03oxMrTmHuE6ZTsBkBfffc/edit#gid=0

Following suggestion to find the average. this is only for the dose of 309 and 314.

Using selected data to get the results

library(readr)
df <- read_csv("C:/Users/billc/Documents/Juvena/PK/Comparison_of_three_1.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   Time = col_double(),
##   Conc = col_double(),
##   ID = col_double(),
##   amt = col_double(),
##   Type = col_character()
## )
df
## # A tibble: 46 x 5
##      Time  Conc    ID   amt Type               
##     <dbl> <dbl> <dbl> <dbl> <chr>              
##  1  0     NA        1  312. Albumin-Elisa-300ug
##  2  0.05  55.5      1   NA  Albumin-Elisa-300ug
##  3  0.167 49.9      1   NA  Albumin-Elisa-300ug
##  4  0.333 51.8      1   NA  Albumin-Elisa-300ug
##  5  0.5   48.7      1   NA  Albumin-Elisa-300ug
##  6  1     37.9      1   NA  Albumin-Elisa-300ug
##  7  2     27.8      1   NA  Albumin-Elisa-300ug
##  8  4     20.0      1   NA  Albumin-Elisa-300ug
##  9  6     16.3      1   NA  Albumin-Elisa-300ug
## 10 10      8.71     1   NA  Albumin-Elisa-300ug
## # ... with 36 more rows
df$Label  = ""
df[which(df$Time<=6), 6] = "Distribution"
df[which(df$Time >6), 6] = "Elimination"

df$comb_Label = interaction(df$Type, df$Label, drop=TRUE, sep="_", lex.order=TRUE)
df
## # A tibble: 46 x 7
##      Time  Conc    ID   amt Type            Label      comb_Label               
##     <dbl> <dbl> <dbl> <dbl> <chr>           <chr>      <fct>                    
##  1  0     NA        1  312. Albumin-Elisa-~ Distribut~ Albumin-Elisa-300ug_Dist~
##  2  0.05  55.5      1   NA  Albumin-Elisa-~ Distribut~ Albumin-Elisa-300ug_Dist~
##  3  0.167 49.9      1   NA  Albumin-Elisa-~ Distribut~ Albumin-Elisa-300ug_Dist~
##  4  0.333 51.8      1   NA  Albumin-Elisa-~ Distribut~ Albumin-Elisa-300ug_Dist~
##  5  0.5   48.7      1   NA  Albumin-Elisa-~ Distribut~ Albumin-Elisa-300ug_Dist~
##  6  1     37.9      1   NA  Albumin-Elisa-~ Distribut~ Albumin-Elisa-300ug_Dist~
##  7  2     27.8      1   NA  Albumin-Elisa-~ Distribut~ Albumin-Elisa-300ug_Dist~
##  8  4     20.0      1   NA  Albumin-Elisa-~ Distribut~ Albumin-Elisa-300ug_Dist~
##  9  6     16.3      1   NA  Albumin-Elisa-~ Distribut~ Albumin-Elisa-300ug_Dist~
## 10 10      8.71     1   NA  Albumin-Elisa-~ Eliminati~ Albumin-Elisa-300ug_Elim~
## # ... with 36 more rows
library(scales)
## 
## Attaching package: 'scales'
## The following object is masked from 'package:readr':
## 
##     col_factor
library(ggplot2)
p <- ggplot(df, aes(x=Time, y=Conc, color=Type, group=comb_Label)) + 
        geom_point(aes(shape=Type), size=3) +
        geom_smooth(method = "lm", se = FALSE, size = 2) +
        scale_y_continuous(expand = expansion(mult = c(0,0.05)),
                           trans='log10', breaks=trans_breaks('log10', function(x) 10^x),
                           labels=trans_format('log10', math_format(10^.x))) +
        xlab("Time (h)") +
        ylab(c("Serum Concetration (log)\n(ng/ml)")) +
        scale_x_continuous(breaks=seq(0, 150, 25)) +
        theme_classic() +
        theme(text = element_text(size=20), 
              legend.justification=c(0,0), 
              legend.position=c(0.05,0),
              legend.title = element_blank(),
              legend.text  = element_text( size = 12))
        
p
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 4 rows containing non-finite values (stat_smooth).
## Warning: Removed 4 rows containing missing values (geom_point).

Following suggestion to find the average. this is only for the dose of 101 and 84.

Using selected data to get the results

library(readr)
df <- read_csv("C:/Users/billc/Documents/Juvena/PK/Comparison_of_three_2.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   Time = col_double(),
##   Conc = col_double(),
##   ID = col_double(),
##   amt = col_double(),
##   Type = col_character()
## )
df
## # A tibble: 46 x 5
##      Time  Conc    ID   amt Type               
##     <dbl> <dbl> <dbl> <dbl> <chr>              
##  1  0     NA        1  92.7 Albumin-Elisa-100ug
##  2  0.05  10.9      1  NA   Albumin-Elisa-100ug
##  3  0.167  9.35     1  NA   Albumin-Elisa-100ug
##  4  0.333  8.03     1  NA   Albumin-Elisa-100ug
##  5  0.5    7.65     1  NA   Albumin-Elisa-100ug
##  6  1      7.28     1  NA   Albumin-Elisa-100ug
##  7  2      5.76     1  NA   Albumin-Elisa-100ug
##  8  4      5.03     1  NA   Albumin-Elisa-100ug
##  9  6      3.72     1  NA   Albumin-Elisa-100ug
## 10 10      2.51     1  NA   Albumin-Elisa-100ug
## # ... with 36 more rows
df$Label  = ""
df[which(df$Time<=6), 6] = "Distribution"
df[which(df$Time >6), 6] = "Elimination"

df$comb_Label = interaction(df$Type, df$Label, drop=TRUE, sep="_", lex.order=TRUE)
df
## # A tibble: 46 x 7
##      Time  Conc    ID   amt Type            Label      comb_Label               
##     <dbl> <dbl> <dbl> <dbl> <chr>           <chr>      <fct>                    
##  1  0     NA        1  92.7 Albumin-Elisa-~ Distribut~ Albumin-Elisa-100ug_Dist~
##  2  0.05  10.9      1  NA   Albumin-Elisa-~ Distribut~ Albumin-Elisa-100ug_Dist~
##  3  0.167  9.35     1  NA   Albumin-Elisa-~ Distribut~ Albumin-Elisa-100ug_Dist~
##  4  0.333  8.03     1  NA   Albumin-Elisa-~ Distribut~ Albumin-Elisa-100ug_Dist~
##  5  0.5    7.65     1  NA   Albumin-Elisa-~ Distribut~ Albumin-Elisa-100ug_Dist~
##  6  1      7.28     1  NA   Albumin-Elisa-~ Distribut~ Albumin-Elisa-100ug_Dist~
##  7  2      5.76     1  NA   Albumin-Elisa-~ Distribut~ Albumin-Elisa-100ug_Dist~
##  8  4      5.03     1  NA   Albumin-Elisa-~ Distribut~ Albumin-Elisa-100ug_Dist~
##  9  6      3.72     1  NA   Albumin-Elisa-~ Distribut~ Albumin-Elisa-100ug_Dist~
## 10 10      2.51     1  NA   Albumin-Elisa-~ Eliminati~ Albumin-Elisa-100ug_Elim~
## # ... with 36 more rows
library(scales)
library(ggplot2)
p <- ggplot(df, aes(x=Time, y=Conc, color=Type, group=comb_Label)) + 
        geom_point(aes(shape=Type), size=3) +
        geom_smooth(method = "lm", se = FALSE, size = 2) +
        scale_y_continuous(expand = expansion(mult = c(0,0.05)),
                           trans='log10', breaks=trans_breaks('log10', function(x) 10^x),
                           labels=trans_format('log10', math_format(10^.x))) +
        xlab("Time (h)") +
        ylab(c("Serum Concetration (log)\n(ng/ml)")) +
        scale_x_continuous(breaks=seq(0, 150, 25)) +
        theme_classic() +
        theme(text = element_text(size=20), 
              legend.justification=c(0,0), 
              legend.position=c(0.05,0),
              legend.title = element_blank(),
              legend.text  = element_text( size = 12))
        
p
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 4 rows containing non-finite values (stat_smooth).
## Warning: Removed 4 rows containing missing values (geom_point).