require("knitr")
## Loading required package: knitr
library(car)
## Loading required package: carData
library(VGAM)
## Loading required package: stats4
## Loading required package: splines
##
## Attaching package: 'VGAM'
## The following object is masked from 'package:car':
##
## logit
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
library(survey)
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
##
## Attaching package: 'survey'
## The following object is masked from 'package:VGAM':
##
## calibrate
## The following object is masked from 'package:graphics':
##
## dotchart
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
##
## recode
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(haven)
NSDUH_2019 <- read_sav("NSDUH_2019.SAV")
View(NSDUH_2019)
sub<-NSDUH_2019%>%
select(hopelesslst30days,hopelesslst30daysnum, sexuality, male,
age_cat,race_eth, marst, educ,white, black, hispanic, asian, other, mult_race,
lst_alc_use2, dep_year2, vestr,analwtc ) %>%
filter( complete.cases(.))
options(survey.lonely.psu = "adjust")
des<-svydesign(ids=~1, strata=~vestr, weights=~analwtc, data =sub )
fit.solr1<-svyolr(hopelesslst30days~race_eth+educ+age_cat+sexuality+male+marst+lst_alc_use2+dep_year2,des)
summary(fit.solr1)
## Call:
## svyolr(hopelesslst30days ~ race_eth + educ + age_cat + sexuality +
## male + marst + lst_alc_use2 + dep_year2, des)
##
## Coefficients:
## Value Std. Error t value
## race_ethasian -0.03929821 0.26220764 -0.1498744
## race_ethblack -0.18913942 0.05250227 -3.6025003
## race_ethhispanic 0.20156861 0.10441323 1.9304892
## race_ethmult_race 0.17656969 0.08376240 2.1079826
## race_ethother -0.05227946 0.19614616 -0.2665332
## educassociates 0.15808757 0.06672784 2.3691396
## educhighschool 0.24397346 0.05363801 4.5485184
## educLssThnHgh 0.43092803 0.07665501 5.6216554
## educsomeCollege 0.15243853 0.05099274 2.9894162
## age_cat20-21 -0.06813294 0.08426914 -0.8085159
## age_cat22-23 -0.05209686 0.08185702 -0.6364373
## age_cat24-25 -0.12491970 0.08151124 -1.5325457
## age_cat26-29 -0.18983909 0.08209346 -2.3124751
## age_cat30-34 -0.33104437 0.08423084 -3.9302040
## age_cat35-49 -0.54207064 0.08099116 -6.6929606
## age_cat50-64 -0.99101986 0.09110365 -10.8779376
## age_cat65+ -1.14567598 0.10071579 -11.3753367
## sexualityBisexual 0.48774346 0.06910503 7.0580025
## sexualityLes/Gay 0.20263788 0.12967809 1.5626224
## maleMale -0.19199793 0.03806454 -5.0440097
## marstdivorced 0.23318698 0.11080016 2.1045727
## marstseparated 0.50798401 0.05114915 9.9314264
## marstwidowed 0.44667097 0.05942071 7.5170927
## lst_alc_use212>1month -0.06237661 0.06583135 -0.9475214
## lst_alc_use2last 30days -0.16678440 0.05428399 -3.0724415
## dep_year21 2.28637049 0.05989444 38.1733373
##
## Intercepts:
## Value Std. Error t value
## 1|2 0.5957 0.1041 5.7233
## 2|3 3.4651 0.1104 31.3904
fit.solr1$deviance+2*length(fit.solr1$coefficients)
## [1] 37380.61
ex1<-svyglm(I(hopelesslst30daysnum>1)~race_eth+educ+age_cat+sexuality+male+marst+lst_alc_use2+dep_year2,des, family="binomial")
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
ex2<-svyglm(I(hopelesslst30daysnum>2)~race_eth+educ+age_cat+sexuality+male+marst+lst_alc_use2+dep_year2,des, family="binomial")
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
round(exp(rbind(coef(ex1)[-1],
coef(ex2)[-1])),3)
## race_ethasian race_ethblack race_ethhispanic race_ethmult_race
## [1,] 0.924 0.807 1.291 1.187
## [2,] 1.505 1.102 1.098 1.357
## race_ethother educassociates educhighschool educLssThnHgh educsomeCollege
## [1,] 0.885 1.171 1.192 1.440 1.137
## [2,] 1.653 1.493 3.141 3.895 1.799
## age_cat20-21 age_cat22-23 age_cat24-25 age_cat26-29 age_cat30-34
## [1,] 0.919 0.946 0.880 0.799 0.687
## [2,] 1.088 1.174 1.082 1.117 0.998
## age_cat35-49 age_cat50-64 age_cat65+ sexualityBisexual sexualityLes/Gay
## [1,] 0.552 0.356 0.305 1.761 1.246
## [2,] 0.829 0.511 0.494 1.500 1.046
## maleMale marstdivorced marstseparated marstwidowed lst_alc_use212>1month
## [1,] 0.818 1.281 1.649 1.559 0.951
## [2,] 0.886 0.893 1.921 1.745 0.815
## lst_alc_use2last 30days dep_year21
## [1,] 0.851 10.521
## [2,] 0.782 9.765
mfit<-vglm(hopelesslst30days~race_eth+educ+age_cat+sexuality+male+marst+lst_alc_use2+dep_year2,
family=multinomial(refLevel = 1),
data=NSDUH_2019,
weights=analwtc/mean(analwtc, na.rm=T))
summary(mfit)
##
## Call:
## vglm(formula = hopelesslst30days ~ race_eth + educ + age_cat +
## sexuality + male + marst + lst_alc_use2 + dep_year2, family = multinomial(refLevel = 1),
## data = NSDUH_2019, weights = analwtc/mean(analwtc, na.rm = T))
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept):1 -0.57222 0.09621 -5.948 2.72e-09 ***
## (Intercept):2 -3.75524 0.19195 -19.564 < 2e-16 ***
## race_ethasian:1 -0.13296 0.21263 -0.625 0.531759
## race_ethasian:2 0.33098 0.42351 0.782 0.434494
## race_ethblack:1 -0.23768 0.04057 -5.858 4.69e-09 ***
## race_ethblack:2 -0.02054 0.08647 -0.237 0.812274
## race_ethhispanic:1 0.25532 0.08387 3.044 0.002332 **
## race_ethhispanic:2 0.26149 0.16715 1.564 0.117708
## race_ethmult_race:1 0.15305 0.05804 2.637 0.008367 **
## race_ethmult_race:2 0.40133 0.14389 2.789 0.005284 **
## race_ethother:1 -0.20697 0.17134 -1.208 0.227069
## race_ethother:2 0.38064 0.29195 1.304 0.192304
## educassociates:1 0.13762 0.04575 3.008 0.002630 **
## educassociates:2 0.47986 0.12441 3.857 0.000115 ***
## educhighschool:1 0.07897 0.03650 2.163 0.030505 *
## educhighschool:2 1.18661 0.09067 13.087 < 2e-16 ***
## educLssThnHgh:1 0.25087 0.05318 4.717 2.39e-06 ***
## educLssThnHgh:2 1.48168 0.11446 12.944 < 2e-16 ***
## educsomeCollege:1 0.09360 0.03598 2.601 0.009287 **
## educsomeCollege:2 0.64132 0.09361 6.851 7.33e-12 ***
## age_cat20-21:1 -0.09807 0.10478 -0.936 0.349313
## age_cat20-21:2 0.01823 0.17586 0.104 0.917457
## age_cat22-23:1 -0.06912 0.10153 -0.681 0.496043
## age_cat22-23:2 0.10486 0.17466 0.600 0.548266
## age_cat24-25:1 -0.13368 0.10111 -1.322 0.186122
## age_cat24-25:2 -0.01831 0.17887 -0.102 0.918475
## age_cat26-29:1 -0.23491 0.08998 -2.611 0.009040 **
## age_cat26-29:2 -0.06831 0.15776 -0.433 0.665004
## age_cat30-34:1 -0.38152 0.09004 -4.237 2.26e-05 ***
## age_cat30-34:2 -0.25764 0.16180 -1.592 0.111301
## age_cat35-49:1 -0.59433 0.08653 -6.868 6.50e-12 ***
## age_cat35-49:2 -0.54692 0.15488 -3.531 0.000414 ***
## age_cat50-64:1 -1.01250 0.08789 -11.520 < 2e-16 ***
## age_cat50-64:2 -1.19667 0.16424 -7.286 3.19e-13 ***
## age_cat65+:1 -1.17908 0.09098 -12.960 < 2e-16 ***
## age_cat65+:2 -1.22459 0.17862 -6.856 7.09e-12 ***
## sexualityBisexual:1 0.52747 0.06581 8.015 1.11e-15 ***
## sexualityBisexual:2 0.80830 0.10592 7.631 2.33e-14 ***
## sexualityLes/Gay:1 0.22658 0.08847 2.561 0.010436 *
## sexualityLes/Gay:2 0.17702 0.18697 0.947 0.343742
## maleMale:1 -0.19934 0.02642 -7.545 4.52e-14 ***
## maleMale:2 -0.21504 0.06249 -3.441 0.000579 ***
## marstdivorced:1 0.27791 0.06133 4.532 5.85e-06 ***
## marstdivorced:2 -0.05243 0.18297 -0.287 0.774466
## marstseparated:1 0.46551 0.03735 12.465 < 2e-16 ***
## marstseparated:2 0.85347 0.08645 9.872 < 2e-16 ***
## marstwidowed:1 0.41962 0.03895 10.774 < 2e-16 ***
## marstwidowed:2 0.71943 0.09309 7.728 1.09e-14 ***
## lst_alc_use212>1month:1 -0.03468 0.04413 -0.786 0.431944
## lst_alc_use212>1month:2 -0.20578 0.09843 -2.091 0.036558 *
## lst_alc_use2last 30days:1 -0.14737 0.03535 -4.169 3.05e-05 ***
## lst_alc_use2last 30days:2 -0.30220 0.08087 -3.737 0.000186 ***
## dep_year21:1 2.16479 0.05089 42.542 < 2e-16 ***
## dep_year21:2 3.50315 0.07293 48.032 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Names of linear predictors: log(mu[,2]/mu[,1]), log(mu[,3]/mu[,1])
##
## Residual deviance: 45390.6 on 59280 degrees of freedom
##
## Log-likelihood: -22695.3 on 59280 degrees of freedom
##
## Number of Fisher scoring iterations: 7
##
## Warning: Hauck-Donner effect detected in the following estimate(s):
## '(Intercept):2'
##
##
## Reference group is level 1 of the response
round(exp(coef(mfit)), 3)
## (Intercept):1 (Intercept):2 race_ethasian:1
## 0.564 0.023 0.876
## race_ethasian:2 race_ethblack:1 race_ethblack:2
## 1.392 0.788 0.980
## race_ethhispanic:1 race_ethhispanic:2 race_ethmult_race:1
## 1.291 1.299 1.165
## race_ethmult_race:2 race_ethother:1 race_ethother:2
## 1.494 0.813 1.463
## educassociates:1 educassociates:2 educhighschool:1
## 1.148 1.616 1.082
## educhighschool:2 educLssThnHgh:1 educLssThnHgh:2
## 3.276 1.285 4.400
## educsomeCollege:1 educsomeCollege:2 age_cat20-21:1
## 1.098 1.899 0.907
## age_cat20-21:2 age_cat22-23:1 age_cat22-23:2
## 1.018 0.933 1.111
## age_cat24-25:1 age_cat24-25:2 age_cat26-29:1
## 0.875 0.982 0.791
## age_cat26-29:2 age_cat30-34:1 age_cat30-34:2
## 0.934 0.683 0.773
## age_cat35-49:1 age_cat35-49:2 age_cat50-64:1
## 0.552 0.579 0.363
## age_cat50-64:2 age_cat65+:1 age_cat65+:2
## 0.302 0.308 0.294
## sexualityBisexual:1 sexualityBisexual:2 sexualityLes/Gay:1
## 1.695 2.244 1.254
## sexualityLes/Gay:2 maleMale:1 maleMale:2
## 1.194 0.819 0.807
## marstdivorced:1 marstdivorced:2 marstseparated:1
## 1.320 0.949 1.593
## marstseparated:2 marstwidowed:1 marstwidowed:2
## 2.348 1.521 2.053
## lst_alc_use212>1month:1 lst_alc_use212>1month:2 lst_alc_use2last 30days:1
## 0.966 0.814 0.863
## lst_alc_use2last 30days:2 dep_year21:1 dep_year21:2
## 0.739 8.713 33.220
round(exp(confint(mfit)), 3)
## 2.5 % 97.5 %
## (Intercept):1 0.467 0.681
## (Intercept):2 0.016 0.034
## race_ethasian:1 0.577 1.328
## race_ethasian:2 0.607 3.193
## race_ethblack:1 0.728 0.854
## race_ethblack:2 0.827 1.161
## race_ethhispanic:1 1.095 1.521
## race_ethhispanic:2 0.936 1.802
## race_ethmult_race:1 1.040 1.306
## race_ethmult_race:2 1.127 1.981
## race_ethother:1 0.581 1.138
## race_ethother:2 0.826 2.593
## educassociates:1 1.049 1.255
## educassociates:2 1.266 2.062
## educhighschool:1 1.007 1.162
## educhighschool:2 2.743 3.913
## educLssThnHgh:1 1.158 1.426
## educLssThnHgh:2 3.516 5.507
## educsomeCollege:1 1.023 1.178
## educsomeCollege:2 1.581 2.281
## age_cat20-21:1 0.738 1.113
## age_cat20-21:2 0.721 1.438
## age_cat22-23:1 0.765 1.139
## age_cat22-23:2 0.789 1.564
## age_cat24-25:1 0.718 1.067
## age_cat24-25:2 0.692 1.394
## age_cat26-29:1 0.663 0.943
## age_cat26-29:2 0.686 1.272
## age_cat30-34:1 0.572 0.815
## age_cat30-34:2 0.563 1.061
## age_cat35-49:1 0.466 0.654
## age_cat35-49:2 0.427 0.784
## age_cat50-64:1 0.306 0.432
## age_cat50-64:2 0.219 0.417
## age_cat65+:1 0.257 0.368
## age_cat65+:2 0.207 0.417
## sexualityBisexual:1 1.490 1.928
## sexualityBisexual:2 1.823 2.762
## sexualityLes/Gay:1 1.055 1.492
## sexualityLes/Gay:2 0.827 1.722
## maleMale:1 0.778 0.863
## maleMale:2 0.714 0.912
## marstdivorced:1 1.171 1.489
## marstdivorced:2 0.663 1.358
## marstseparated:1 1.480 1.714
## marstseparated:2 1.982 2.781
## marstwidowed:1 1.410 1.642
## marstwidowed:2 1.711 2.464
## lst_alc_use212>1month:1 0.886 1.053
## lst_alc_use212>1month:2 0.671 0.987
## lst_alc_use2last 30days:1 0.805 0.925
## lst_alc_use2last 30days:2 0.631 0.866
## dep_year21:1 7.886 9.627
## dep_year21:2 28.795 38.325
dat<-expand.grid(race_eth=levels(NSDUH_2019$race_eth),
educ=levels(NSDUH_2019$educ),
male=levels(NSDUH_2019$male),
age_cat=levels(NSDUH_2019$age_cat),
marst=levels(NSDUH_2019$marst),
sexuality=levels(NSDUH_2019$sexuality),
lst_alc_use2=levels(NSDUH_2019$lst_alc_use2),
dep_year2=levels(NSDUH_2019$dep_year2))
fitm<-predict(mfit, newdat=dat,type="response")
dat<-cbind(dat, round(fitm,3))
head(dat, n=20)
## race_eth educ male age_cat marst sexuality lst_alc_use2
## 1 white colgrad Female 18-19 married Heterosexual >12months
## 2 asian colgrad Female 18-19 married Heterosexual >12months
## 3 black colgrad Female 18-19 married Heterosexual >12months
## 4 hispanic colgrad Female 18-19 married Heterosexual >12months
## 5 mult_race colgrad Female 18-19 married Heterosexual >12months
## 6 other colgrad Female 18-19 married Heterosexual >12months
## 7 white associates Female 18-19 married Heterosexual >12months
## 8 asian associates Female 18-19 married Heterosexual >12months
## 9 black associates Female 18-19 married Heterosexual >12months
## 10 hispanic associates Female 18-19 married Heterosexual >12months
## 11 mult_race associates Female 18-19 married Heterosexual >12months
## 12 other associates Female 18-19 married Heterosexual >12months
## 13 white highschool Female 18-19 married Heterosexual >12months
## 14 asian highschool Female 18-19 married Heterosexual >12months
## 15 black highschool Female 18-19 married Heterosexual >12months
## 16 hispanic highschool Female 18-19 married Heterosexual >12months
## 17 mult_race highschool Female 18-19 married Heterosexual >12months
## 18 other highschool Female 18-19 married Heterosexual >12months
## 19 white LssThnHgh Female 18-19 married Heterosexual >12months
## 20 asian LssThnHgh Female 18-19 married Heterosexual >12months
## dep_year2 1 2 3
## 1 0 0.630 0.355 0.015
## 2 0 0.655 0.324 0.021
## 3 0 0.681 0.303 0.016
## 4 0 0.569 0.414 0.017
## 5 0 0.591 0.389 0.021
## 6 0 0.670 0.307 0.023
## 7 0 0.593 0.384 0.022
## 8 0 0.617 0.350 0.032
## 9 0 0.646 0.330 0.024
## 10 0 0.531 0.443 0.026
## 11 0 0.552 0.417 0.031
## 12 0 0.632 0.333 0.035
## 13 0 0.593 0.362 0.045
## 14 0 0.609 0.326 0.065
## 15 0 0.642 0.309 0.048
## 16 0 0.530 0.418 0.053
## 17 0 0.548 0.390 0.063
## 18 0 0.622 0.309 0.070
## 19 0 0.547 0.397 0.056
## 20 0 0.562 0.357 0.081
## Proportional
fit.vgam<-vglm(as.ordered(hopelesslst30days)~race_eth+educ+age_cat+sexuality+male+marst+lst_alc_use2+dep_year2,
NSDUH_2019, weights =analwtc/mean(analwtc, na.rm=T),
family=cumulative(parallel = T, reverse = T)) #<-parallel = T == proportional odds
summary(fit.vgam)
##
## Call:
## vglm(formula = as.ordered(hopelesslst30days) ~ race_eth + educ +
## age_cat + sexuality + male + marst + lst_alc_use2 + dep_year2,
## family = cumulative(parallel = T, reverse = T), data = NSDUH_2019,
## weights = analwtc/mean(analwtc, na.rm = T))
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept):1 -0.59532 0.08758 -6.798 1.06e-11 ***
## (Intercept):2 -3.46474 0.09226 -37.556 < 2e-16 ***
## race_ethasian -0.03944 0.19682 -0.200 0.841163
## race_ethblack -0.18957 0.03786 -5.007 5.52e-07 ***
## race_ethhispanic 0.20189 0.07735 2.610 0.009051 **
## race_ethmult_race 0.17677 0.05523 3.201 0.001372 **
## race_ethother -0.04832 0.15335 -0.315 0.752687
## educassociates 0.15844 0.04391 3.608 0.000309 ***
## educhighschool 0.24401 0.03433 7.108 1.18e-12 ***
## educLssThnHgh 0.43087 0.04921 8.756 < 2e-16 ***
## educsomeCollege 0.15207 0.03423 4.442 8.92e-06 ***
## age_cat20-21 -0.06813 0.09303 -0.732 0.463985
## age_cat22-23 -0.05236 0.09062 -0.578 0.563419
## age_cat24-25 -0.12523 0.09075 -1.380 0.167576
## age_cat26-29 -0.19005 0.08070 -2.355 0.018516 *
## age_cat30-34 -0.33137 0.08100 -4.091 4.30e-05 ***
## age_cat35-49 -0.54241 0.07777 -6.975 3.06e-12 ***
## age_cat50-64 -0.99122 0.07932 -12.497 < 2e-16 ***
## age_cat65+ -1.14614 0.08252 -13.889 < 2e-16 ***
## sexualityBisexual 0.48741 0.05676 8.587 < 2e-16 ***
## sexualityLes/Gay 0.20272 0.08216 2.467 0.013610 *
## maleMale -0.19185 0.02503 -7.665 1.79e-14 ***
## marstdivorced 0.23308 0.05922 3.936 8.30e-05 ***
## marstseparated 0.50798 0.03513 14.460 < 2e-16 ***
## marstwidowed 0.44614 0.03680 12.122 < 2e-16 ***
## lst_alc_use212>1month -0.06224 0.04148 -1.500 0.133503
## lst_alc_use2last 30days -0.16664 0.03333 -4.999 5.77e-07 ***
## dep_year21 2.28639 0.04129 55.375 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Names of linear predictors: logitlink(P[Y>=2]), logitlink(P[Y>=3])
##
## Residual deviance: 45651.43 on 59306 degrees of freedom
##
## Log-likelihood: -22825.71 on 59306 degrees of freedom
##
## Number of Fisher scoring iterations: 5
##
## No Hauck-Donner effect found in any of the estimates
##
##
## Exponentiated coefficients:
## race_ethasian race_ethblack race_ethhispanic
## 0.9613245 0.8273160 1.2237142
## race_ethmult_race race_ethother educassociates
## 1.1933600 0.9528283 1.1716772
## educhighschool educLssThnHgh educsomeCollege
## 1.2763630 1.5385958 1.1642359
## age_cat20-21 age_cat22-23 age_cat24-25
## 0.9341433 0.9489874 0.8822924
## age_cat26-29 age_cat30-34 age_cat35-49
## 0.8269151 0.7179383 0.5813463
## age_cat50-64 age_cat65+ sexualityBisexual
## 0.3711250 0.3178623 1.6280974
## sexualityLes/Gay maleMale marstdivorced
## 1.2247296 0.8254338 1.2624886
## marstseparated marstwidowed lst_alc_use212>1month
## 1.6619338 1.5622666 0.9396572
## lst_alc_use2last 30days dep_year21
## 0.8465074 9.8393820
#Non-proportional odds
fit.vgam2<-vglm(as.ordered(hopelesslst30days)~race_eth+educ+age_cat+sexuality+male+marst+lst_alc_use2+dep_year2,
NSDUH_2019,
weights =analwtc/mean(analwtc, na.rm=T),
family=cumulative(parallel = F, reverse = T)) #<-parallel = F == Nonproportional odds
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in Deviance.categorical.data.vgam(mu = mu, y = y, w = w, residuals =
## residuals, : fitted values close to 0 or 1
## Warning in slot(family, "validparams")(eta, y, extra = extra): It seems that
## the nonparallelism assumption has resulted in intersecting linear/additive
## predictors. Try propodds() or fitting a partial nonproportional odds model or
## choosing some other link function, etc.
## Warning in vglm.fitter(x = x, y = y, w = w, offset = offset, Xm2 = Xm2, :
## iterations terminated because half-step sizes are very small
## Warning in vglm.fitter(x = x, y = y, w = w, offset = offset, Xm2 = Xm2, : some
## quantities such as z, residuals, SEs may be inaccurate due to convergence at a
## half-step
## Warning in log(prob): NaNs produced
summary(fit.vgam2)
## Warning in matrix.power(wz, M = M, power = 0.5, fast = TRUE): Some weight
## matrices have negative eigenvalues. They will be assigned NAs
##
## Call:
## vglm(formula = as.ordered(hopelesslst30days) ~ race_eth + educ +
## age_cat + sexuality + male + marst + lst_alc_use2 + dep_year2,
## family = cumulative(parallel = F, reverse = T), data = NSDUH_2019,
## weights = analwtc/mean(analwtc, na.rm = T))
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept):1 -4.476e-01 1.282e-02 -3.492e+01 <2e-16 ***
## (Intercept):2 -3.313e+00 3.121e-02 -1.062e+02 <2e-16 ***
## race_ethasian:1 -6.378e-02 2.112e-07 -3.020e+05 <2e-16 ***
## race_ethasian:2 3.953e-01 2.646e-07 1.494e+06 <2e-16 ***
## race_ethblack:1 -1.832e-01 5.130e-08 -3.572e+06 <2e-16 ***
## race_ethblack:2 6.748e-02 6.239e-08 1.082e+06 <2e-16 ***
## race_ethhispanic:1 2.324e-01 1.270e-07 1.830e+06 <2e-16 ***
## race_ethhispanic:2 1.523e-01 1.645e-07 9.259e+05 <2e-16 ***
## race_ethmult_race:1 1.416e-01 1.453e-07 9.745e+05 <2e-16 ***
## race_ethmult_race:2 2.386e-01 1.861e-07 1.282e+06 <2e-16 ***
## race_ethother:1 -1.053e-01 1.051e-07 -1.001e+06 <2e-16 ***
## race_ethother:2 7.172e-01 1.447e-07 4.955e+06 <2e-16 ***
## educassociates:1 1.254e-01 2.733e-07 4.590e+05 <2e-16 ***
## educassociates:2 1.977e-01 3.441e-07 5.745e+05 <2e-16 ***
## educhighschool:1 1.389e-01 2.170e-07 6.402e+05 <2e-16 ***
## educhighschool:2 9.107e-01 2.566e-07 3.549e+06 <2e-16 ***
## educLssThnHgh:1 3.068e-01 2.267e-07 1.353e+06 <2e-16 ***
## educLssThnHgh:2 1.209e+00 2.614e-07 4.625e+06 <2e-16 ***
## educsomeCollege:1 1.012e-01 2.096e-07 4.826e+05 <2e-16 ***
## educsomeCollege:2 3.166e-01 2.607e-07 1.215e+06 <2e-16 ***
## age_cat20-21:1 -1.041e-01 8.068e-08 -1.291e+06 <2e-16 ***
## age_cat20-21:2 -2.792e-02 1.161e-07 -2.404e+05 <2e-16 ***
## age_cat22-23:1 -8.407e-02 1.083e-07 -7.760e+05 <2e-16 ***
## age_cat22-23:2 -1.750e-01 1.624e-07 -1.078e+06 <2e-16 ***
## age_cat24-25:1 -1.663e-01 1.231e-07 -1.351e+06 <2e-16 ***
## age_cat24-25:2 -4.010e-01 1.754e-07 -2.286e+06 <2e-16 ***
## age_cat26-29:1 -2.628e-01 9.850e-08 -2.668e+06 <2e-16 ***
## age_cat26-29:2 -4.465e-01 1.383e-07 -3.227e+06 <2e-16 ***
## age_cat30-34:1 -4.320e-01 1.049e-07 -4.119e+06 <2e-16 ***
## age_cat30-34:2 -6.437e-01 1.415e-07 -4.549e+06 <2e-16 ***
## age_cat35-49:1 -6.350e-01 8.995e-08 -7.059e+06 <2e-16 ***
## age_cat35-49:2 -7.957e-01 1.238e-07 -6.429e+06 <2e-16 ***
## age_cat50-64:1 -9.879e-01 1.000e-07 -9.875e+06 <2e-16 ***
## age_cat50-64:2 -1.098e+00 1.281e-07 -8.570e+06 <2e-16 ***
## age_cat65+:1 -1.097e+00 9.803e-08 -1.119e+07 <2e-16 ***
## age_cat65+:2 -1.018e+00 1.325e-07 -7.685e+06 <2e-16 ***
## sexualityBisexual:1 5.010e-01 8.745e-08 5.729e+06 <2e-16 ***
## sexualityBisexual:2 1.215e+00 8.463e-08 1.435e+07 <2e-16 ***
## sexualityLes/Gay:1 1.950e-01 1.545e-07 1.263e+06 <2e-16 ***
## sexualityLes/Gay:2 5.372e-03 2.021e-07 2.657e+04 <2e-16 ***
## maleMale:1 -1.636e-01 4.183e-08 -3.911e+06 <2e-16 ***
## maleMale:2 -9.250e-02 5.339e-08 -1.733e+06 <2e-16 ***
## marstdivorced:1 1.789e-01 1.850e-07 9.671e+05 <2e-16 ***
## marstdivorced:2 -2.395e-01 2.121e-07 -1.129e+06 <2e-16 ***
## marstseparated:1 4.455e-01 6.730e-08 6.619e+06 <2e-16 ***
## marstseparated:2 5.311e-01 7.419e-08 7.159e+06 <2e-16 ***
## marstwidowed:1 3.663e-01 7.261e-08 5.045e+06 <2e-16 ***
## marstwidowed:2 3.435e-01 9.074e-08 3.786e+06 <2e-16 ***
## lst_alc_use212>1month:1 -3.777e-02 6.718e-08 -5.622e+05 <2e-16 ***
## lst_alc_use212>1month:2 -1.267e-01 8.513e-08 -1.488e+06 <2e-16 ***
## lst_alc_use2last 30days:1 -1.322e-01 4.874e-08 -2.713e+06 <2e-16 ***
## lst_alc_use2last 30days:2 -1.623e-01 6.174e-08 -2.629e+06 <2e-16 ***
## dep_year21:1 2.329e+00 1.282e-02 1.817e+02 <2e-16 ***
## dep_year21:2 4.905e+00 3.121e-02 1.572e+02 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Names of linear predictors: logitlink(P[Y>=2]), logitlink(P[Y>=3])
##
## Residual deviance: 594353.6 on 59280 degrees of freedom
##
## Log-likelihood: NA on 59280 degrees of freedom
##
## Number of Fisher scoring iterations: 2
##
## Warning: Hauck-Donner effect detected in the following estimate(s):
## '(Intercept):2', 'race_ethhispanic:1', 'race_ethmult_race:1', 'educassociates:1', 'educhighschool:1', 'educLssThnHgh:1', 'educsomeCollege:1', 'age_cat20-21:2', 'age_cat22-23:2', 'age_cat24-25:2', 'age_cat26-29:2', 'age_cat30-34:2', 'age_cat35-49:2', 'age_cat50-64:2', 'age_cat65+:2', 'sexualityBisexual:1', 'sexualityLes/Gay:1', 'maleMale:2', 'marstdivorced:1', 'marstdivorced:2', 'marstseparated:1', 'marstwidowed:1', 'lst_alc_use212>1month:2', 'lst_alc_use2last 30days:2', 'dep_year21:1'
##
##
## Exponentiated coefficients:
## race_ethasian:1 race_ethasian:2 race_ethblack:1
## 0.9382134 1.4848387 0.8325749
## race_ethblack:2 race_ethhispanic:1 race_ethhispanic:2
## 1.0698126 1.2616653 1.1645589
## race_ethmult_race:1 race_ethmult_race:2 race_ethother:1
## 1.1521373 1.2694318 0.9000594
## race_ethother:2 educassociates:1 educassociates:2
## 2.0487340 1.1336577 1.2185531
## educhighschool:1 educhighschool:2 educLssThnHgh:1
## 1.1490023 2.4860187 1.3590598
## educLssThnHgh:2 educsomeCollege:1 educsomeCollege:2
## 3.3501447 1.1064579 1.3725138
## age_cat20-21:1 age_cat20-21:2 age_cat22-23:1
## 0.9011048 0.9724697 0.9193700
## age_cat22-23:2 age_cat24-25:1 age_cat24-25:2
## 0.8394280 0.8468018 0.6696217
## age_cat26-29:1 age_cat26-29:2 age_cat30-34:1
## 0.7689212 0.6398798 0.6492363
## age_cat30-34:2 age_cat35-49:1 age_cat35-49:2
## 0.5253237 0.5299591 0.4512819
## age_cat50-64:1 age_cat50-64:2 age_cat65+:1
## 0.3723636 0.3335572 0.3340076
## age_cat65+:2 sexualityBisexual:1 sexualityBisexual:2
## 0.3613094 1.6504152 3.3699845
## sexualityLes/Gay:1 sexualityLes/Gay:2 maleMale:1
## 1.2153596 1.0053864 0.8490645
## maleMale:2 marstdivorced:1 marstdivorced:2
## 0.9116501 1.1959512 0.7870223
## marstseparated:1 marstseparated:2 marstwidowed:1
## 1.5612556 1.7007923 1.4423905
## marstwidowed:2 lst_alc_use212>1month:1 lst_alc_use212>1month:2
## 1.4099432 0.9629342 0.8810107
## lst_alc_use2last 30days:1 lst_alc_use2last 30days:2 dep_year21:1
## 0.8761585 0.8501458 10.2701789
## dep_year21:2
## 135.0039272
AIC(fit.vgam)
## [1] 45707.43
AIC(fit.vgam2)
## [1] NaN
attach(dat)
fitted.ord<-round(predict(fit.vgam, newdat=dat[,1:3], type="response"), 3)
dat<-cbind(dat, fitted.ord)
names(dat)<-c(names(dat)[1:3], "mp1", "mp2", "mp3", "op1", "op2", "op3")
head(dat, n=20)
## race_eth educ male mp1 mp2 mp3 op1 op2 op3
## 1 white colgrad Female 18-19 married Heterosexual >12months 0 0.630
## 2 asian colgrad Female 18-19 married Heterosexual >12months 0 0.655
## 3 black colgrad Female 18-19 married Heterosexual >12months 0 0.681
## 4 hispanic colgrad Female 18-19 married Heterosexual >12months 0 0.569
## 5 mult_race colgrad Female 18-19 married Heterosexual >12months 0 0.591
## 6 other colgrad Female 18-19 married Heterosexual >12months 0 0.670
## 7 white associates Female 18-19 married Heterosexual >12months 0 0.593
## 8 asian associates Female 18-19 married Heterosexual >12months 0 0.617
## 9 black associates Female 18-19 married Heterosexual >12months 0 0.646
## 10 hispanic associates Female 18-19 married Heterosexual >12months 0 0.531
## 11 mult_race associates Female 18-19 married Heterosexual >12months 0 0.552
## 12 other associates Female 18-19 married Heterosexual >12months 0 0.632
## 13 white highschool Female 18-19 married Heterosexual >12months 0 0.593
## 14 asian highschool Female 18-19 married Heterosexual >12months 0 0.609
## 15 black highschool Female 18-19 married Heterosexual >12months 0 0.642
## 16 hispanic highschool Female 18-19 married Heterosexual >12months 0 0.530
## 17 mult_race highschool Female 18-19 married Heterosexual >12months 0 0.548
## 18 other highschool Female 18-19 married Heterosexual >12months 0 0.622
## 19 white LssThnHgh Female 18-19 married Heterosexual >12months 0 0.547
## 20 asian LssThnHgh Female 18-19 married Heterosexual >12months 0 0.562
## NA NA NA NA NA
## 1 0.355 0.015 0.645 0.325 0.030
## 2 0.324 0.021 0.654 0.317 0.029
## 3 0.303 0.016 0.687 0.288 0.025
## 4 0.414 0.017 0.597 0.366 0.037
## 5 0.389 0.021 0.603 0.361 0.036
## 6 0.307 0.023 0.656 0.315 0.029
## 7 0.384 0.022 0.608 0.357 0.035
## 8 0.350 0.032 0.617 0.349 0.034
## 9 0.330 0.024 0.652 0.319 0.029
## 10 0.443 0.026 0.558 0.399 0.043
## 11 0.417 0.031 0.565 0.393 0.042
## 12 0.333 0.035 0.619 0.347 0.034
## 13 0.362 0.045 0.587 0.375 0.038
## 14 0.326 0.065 0.596 0.367 0.037
## 15 0.309 0.048 0.632 0.336 0.032
## 16 0.418 0.053 0.537 0.416 0.047
## 17 0.390 0.063 0.544 0.411 0.045
## 18 0.309 0.070 0.599 0.365 0.037
## 19 0.397 0.056 0.541 0.413 0.046
## 20 0.357 0.081 0.551 0.405 0.044
##Are the assumptions of the proportional odds model met? How did you evaluate the proportional odds assumption? ## A sensitivity analysis was performed on both the ordinal and multinomial regression models. The ordinal model did not have much consistent proportionality, as much variation in the observed odds ratios occured in the education variables, and many of the racial based variables. The most consistent of these appeared to be the mental health, alcohol, and sexuality based variables. Comparing this to the multinomial model the multinomial one has less variation in each of the categorical variables used ti eplain the outcome variable. It appears to be more consistent but less of a fit for the model.
##Which model (Proportional odds or Multinomial) fits the data better? how did you decide upon this? ## Comparing the AIC reveals the multinomial model to be the best fit for my data. Comparing both the proportional odds model and multinomial indicates an aic of 45707.43, vs 45498.6, the lower of the two indicates a better fit.
AIC(fit.vgam)
## [1] 45707.43
AIC(mfit)
## [1] 45498.6
##For the best fitting model from part c,Describe the results of your model, and present output from the model in terms of odds ratios and confidence intervals for all model parameters in a table. ##The results of the multinomial model indicate several interesting items. Compared to whites, blacks were less likely to report not being hopeless, vs sometimes feeling hopeless. Hispanics were more likely than whites to feel hopeless some of the time vs not at all, with multi racial people feeling hopeless some of the time, compared to not often, and again feeling hopeless most of the time vs some of the time compared to whites. Compared to people with College degrees, those without them including all other other educational attainment levels (less than high school, high school, some college, associates) reported feeling hopeles some of the time vs none of the time, and more often feeling hopeless than sometimes feeling hopeless. Education means lower levels of feeling hopeless not often. People aged 26-29 and 30-34 were less likely to feel hopeless some of the time vs not often at all compared to people aged 18-19. Compared to people aged 18-19 , people aged 35-49, 50-64, and 65+ were are less likely to report feeling hopeless some of the time vs none of the time, and most of the time compared to some of the time. Homosexuals compared to heterosexuals are more likely to indicate feeling hopeless some of the time as opposed to none of time. However bisexuals compared to heterosexuals are both more likely to report feeling hopeless some of the time compared to not often feeling hopeless, and feeling hopeless most fo the time vs some of the time. Males are less likely to report feeling hopeless some of the time vs none of the time, and most of the time vs some of the time than their female counterparts. Compared to married individuals, divorced people are more likely to report feeling hopeless some of the time vs none of the time. WIth these results being similar for separated and widowed individuals, but these people also are more likely to report feeling hopeless most of the time vs some of the time. Alcohol usage within the last year is less likely to result in feeling hopless most of the time vs some of the time, however if alcohol was used within the last thrity days the individual will be less likely to report feeling hopless some of the time vs not often, and most of the time vs some of the time. Finally depressive episodes within the last year is more likely to result in feelings of hopelessness some of the time, vs none of the time, and most of the time compared to some.
mfit<-vglm(hopelesslst30days~race_eth+educ+age_cat+sexuality+male+marst+lst_alc_use2+dep_year2,
family=multinomial(refLevel = 1),
data=NSDUH_2019,
weights=analwtc/mean(analwtc, na.rm=T))
summary(mfit)
##
## Call:
## vglm(formula = hopelesslst30days ~ race_eth + educ + age_cat +
## sexuality + male + marst + lst_alc_use2 + dep_year2, family = multinomial(refLevel = 1),
## data = NSDUH_2019, weights = analwtc/mean(analwtc, na.rm = T))
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept):1 -0.57222 0.09621 -5.948 2.72e-09 ***
## (Intercept):2 -3.75524 0.19195 -19.564 < 2e-16 ***
## race_ethasian:1 -0.13296 0.21263 -0.625 0.531759
## race_ethasian:2 0.33098 0.42351 0.782 0.434494
## race_ethblack:1 -0.23768 0.04057 -5.858 4.69e-09 ***
## race_ethblack:2 -0.02054 0.08647 -0.237 0.812274
## race_ethhispanic:1 0.25532 0.08387 3.044 0.002332 **
## race_ethhispanic:2 0.26149 0.16715 1.564 0.117708
## race_ethmult_race:1 0.15305 0.05804 2.637 0.008367 **
## race_ethmult_race:2 0.40133 0.14389 2.789 0.005284 **
## race_ethother:1 -0.20697 0.17134 -1.208 0.227069
## race_ethother:2 0.38064 0.29195 1.304 0.192304
## educassociates:1 0.13762 0.04575 3.008 0.002630 **
## educassociates:2 0.47986 0.12441 3.857 0.000115 ***
## educhighschool:1 0.07897 0.03650 2.163 0.030505 *
## educhighschool:2 1.18661 0.09067 13.087 < 2e-16 ***
## educLssThnHgh:1 0.25087 0.05318 4.717 2.39e-06 ***
## educLssThnHgh:2 1.48168 0.11446 12.944 < 2e-16 ***
## educsomeCollege:1 0.09360 0.03598 2.601 0.009287 **
## educsomeCollege:2 0.64132 0.09361 6.851 7.33e-12 ***
## age_cat20-21:1 -0.09807 0.10478 -0.936 0.349313
## age_cat20-21:2 0.01823 0.17586 0.104 0.917457
## age_cat22-23:1 -0.06912 0.10153 -0.681 0.496043
## age_cat22-23:2 0.10486 0.17466 0.600 0.548266
## age_cat24-25:1 -0.13368 0.10111 -1.322 0.186122
## age_cat24-25:2 -0.01831 0.17887 -0.102 0.918475
## age_cat26-29:1 -0.23491 0.08998 -2.611 0.009040 **
## age_cat26-29:2 -0.06831 0.15776 -0.433 0.665004
## age_cat30-34:1 -0.38152 0.09004 -4.237 2.26e-05 ***
## age_cat30-34:2 -0.25764 0.16180 -1.592 0.111301
## age_cat35-49:1 -0.59433 0.08653 -6.868 6.50e-12 ***
## age_cat35-49:2 -0.54692 0.15488 -3.531 0.000414 ***
## age_cat50-64:1 -1.01250 0.08789 -11.520 < 2e-16 ***
## age_cat50-64:2 -1.19667 0.16424 -7.286 3.19e-13 ***
## age_cat65+:1 -1.17908 0.09098 -12.960 < 2e-16 ***
## age_cat65+:2 -1.22459 0.17862 -6.856 7.09e-12 ***
## sexualityBisexual:1 0.52747 0.06581 8.015 1.11e-15 ***
## sexualityBisexual:2 0.80830 0.10592 7.631 2.33e-14 ***
## sexualityLes/Gay:1 0.22658 0.08847 2.561 0.010436 *
## sexualityLes/Gay:2 0.17702 0.18697 0.947 0.343742
## maleMale:1 -0.19934 0.02642 -7.545 4.52e-14 ***
## maleMale:2 -0.21504 0.06249 -3.441 0.000579 ***
## marstdivorced:1 0.27791 0.06133 4.532 5.85e-06 ***
## marstdivorced:2 -0.05243 0.18297 -0.287 0.774466
## marstseparated:1 0.46551 0.03735 12.465 < 2e-16 ***
## marstseparated:2 0.85347 0.08645 9.872 < 2e-16 ***
## marstwidowed:1 0.41962 0.03895 10.774 < 2e-16 ***
## marstwidowed:2 0.71943 0.09309 7.728 1.09e-14 ***
## lst_alc_use212>1month:1 -0.03468 0.04413 -0.786 0.431944
## lst_alc_use212>1month:2 -0.20578 0.09843 -2.091 0.036558 *
## lst_alc_use2last 30days:1 -0.14737 0.03535 -4.169 3.05e-05 ***
## lst_alc_use2last 30days:2 -0.30220 0.08087 -3.737 0.000186 ***
## dep_year21:1 2.16479 0.05089 42.542 < 2e-16 ***
## dep_year21:2 3.50315 0.07293 48.032 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Names of linear predictors: log(mu[,2]/mu[,1]), log(mu[,3]/mu[,1])
##
## Residual deviance: 45390.6 on 59280 degrees of freedom
##
## Log-likelihood: -22695.3 on 59280 degrees of freedom
##
## Number of Fisher scoring iterations: 7
##
## Warning: Hauck-Donner effect detected in the following estimate(s):
## '(Intercept):2'
##
##
## Reference group is level 1 of the response
round(exp(coef(mfit)), 3)
## (Intercept):1 (Intercept):2 race_ethasian:1
## 0.564 0.023 0.876
## race_ethasian:2 race_ethblack:1 race_ethblack:2
## 1.392 0.788 0.980
## race_ethhispanic:1 race_ethhispanic:2 race_ethmult_race:1
## 1.291 1.299 1.165
## race_ethmult_race:2 race_ethother:1 race_ethother:2
## 1.494 0.813 1.463
## educassociates:1 educassociates:2 educhighschool:1
## 1.148 1.616 1.082
## educhighschool:2 educLssThnHgh:1 educLssThnHgh:2
## 3.276 1.285 4.400
## educsomeCollege:1 educsomeCollege:2 age_cat20-21:1
## 1.098 1.899 0.907
## age_cat20-21:2 age_cat22-23:1 age_cat22-23:2
## 1.018 0.933 1.111
## age_cat24-25:1 age_cat24-25:2 age_cat26-29:1
## 0.875 0.982 0.791
## age_cat26-29:2 age_cat30-34:1 age_cat30-34:2
## 0.934 0.683 0.773
## age_cat35-49:1 age_cat35-49:2 age_cat50-64:1
## 0.552 0.579 0.363
## age_cat50-64:2 age_cat65+:1 age_cat65+:2
## 0.302 0.308 0.294
## sexualityBisexual:1 sexualityBisexual:2 sexualityLes/Gay:1
## 1.695 2.244 1.254
## sexualityLes/Gay:2 maleMale:1 maleMale:2
## 1.194 0.819 0.807
## marstdivorced:1 marstdivorced:2 marstseparated:1
## 1.320 0.949 1.593
## marstseparated:2 marstwidowed:1 marstwidowed:2
## 2.348 1.521 2.053
## lst_alc_use212>1month:1 lst_alc_use212>1month:2 lst_alc_use2last 30days:1
## 0.966 0.814 0.863
## lst_alc_use2last 30days:2 dep_year21:1 dep_year21:2
## 0.739 8.713 33.220
round(exp(confint(mfit)), 3)
## 2.5 % 97.5 %
## (Intercept):1 0.467 0.681
## (Intercept):2 0.016 0.034
## race_ethasian:1 0.577 1.328
## race_ethasian:2 0.607 3.193
## race_ethblack:1 0.728 0.854
## race_ethblack:2 0.827 1.161
## race_ethhispanic:1 1.095 1.521
## race_ethhispanic:2 0.936 1.802
## race_ethmult_race:1 1.040 1.306
## race_ethmult_race:2 1.127 1.981
## race_ethother:1 0.581 1.138
## race_ethother:2 0.826 2.593
## educassociates:1 1.049 1.255
## educassociates:2 1.266 2.062
## educhighschool:1 1.007 1.162
## educhighschool:2 2.743 3.913
## educLssThnHgh:1 1.158 1.426
## educLssThnHgh:2 3.516 5.507
## educsomeCollege:1 1.023 1.178
## educsomeCollege:2 1.581 2.281
## age_cat20-21:1 0.738 1.113
## age_cat20-21:2 0.721 1.438
## age_cat22-23:1 0.765 1.139
## age_cat22-23:2 0.789 1.564
## age_cat24-25:1 0.718 1.067
## age_cat24-25:2 0.692 1.394
## age_cat26-29:1 0.663 0.943
## age_cat26-29:2 0.686 1.272
## age_cat30-34:1 0.572 0.815
## age_cat30-34:2 0.563 1.061
## age_cat35-49:1 0.466 0.654
## age_cat35-49:2 0.427 0.784
## age_cat50-64:1 0.306 0.432
## age_cat50-64:2 0.219 0.417
## age_cat65+:1 0.257 0.368
## age_cat65+:2 0.207 0.417
## sexualityBisexual:1 1.490 1.928
## sexualityBisexual:2 1.823 2.762
## sexualityLes/Gay:1 1.055 1.492
## sexualityLes/Gay:2 0.827 1.722
## maleMale:1 0.778 0.863
## maleMale:2 0.714 0.912
## marstdivorced:1 1.171 1.489
## marstdivorced:2 0.663 1.358
## marstseparated:1 1.480 1.714
## marstseparated:2 1.982 2.781
## marstwidowed:1 1.410 1.642
## marstwidowed:2 1.711 2.464
## lst_alc_use212>1month:1 0.886 1.053
## lst_alc_use212>1month:2 0.671 0.987
## lst_alc_use2last 30days:1 0.805 0.925
## lst_alc_use2last 30days:2 0.631 0.866
## dep_year21:1 7.886 9.627
## dep_year21:2 28.795 38.325