- What problem do mixed effect models solve?
- Random versus fixed effects
- Parameters
- Equations for dragons
15/3/2021
Source | Sum of squares | Degrees of freedom | Mean squares | F |
---|---|---|---|---|
Garden | 20 | 1 | 20 | 15 |
Error | 24 | 18 | s^2 = 1.3333 | |
Total | 44 | 19 |
Imagine that we decided to train dragons and so we went out into the mountains and collected data on dragon intelligence (testScore) as a prerequisite. We sampled individuals over a range of body lengths and across three sites in eight different mountain ranges.
\[ \text{Model 1: } Y_i = \alpha + \beta bodylengths_i + \epsilon_i \text{ and } \epsilon_i \sim N(0,\sigma^2) \]
\[\text{Model 2: } Y_{ij} = \alpha_j + \beta_j bodylengths_{ij} + \epsilon_{ij} \text{ and } \epsilon_{ij} \sim N(0,\sigma^2) \]
\[\text{Model 3: } Y_{ij} = \alpha_j + \beta bodylengths_{ij} + \epsilon_{ij} \text{ and } \epsilon_{ij} \sim N(0,\sigma^2) \]
\[\text{Model 4: } Y_{ij} = \alpha + \beta_j bodylengths_{ij} + \epsilon_{ij} \text{ and } \epsilon_{ij} \sim N(0,\sigma^2) \]
\[\text{Model 3: } Y_{ij} = \alpha_j + \beta bodylengths_{ij} + \epsilon_{ij} \text{ and } \epsilon_{ij} \sim N(0,\sigma^2) \]
\[\text{Model 5: } Y_{ij} = \alpha + \beta bodylengths_{ij} + a_j + \epsilon_{ij} \text{ where } \] \[ a_j \sim N(0,\sigma_a^2) \text{ and } \epsilon_{ij} \sim N(0,\sigma^2) \]
\[ a_j \sim N(0,\sigma_a^2) \text{ and } b_j \sim N(0,\sigma_b^2) \text{ and }\epsilon_{ij} \sim N(0,\sigma^2) \]