Libraries
library(FRESA.CAD)
library("mlbench")
library("ggplot2")
library(pander)
library(beepr)
library(twosamples)
library(dplyr)
models <-c(BSWiMS.model,NAIVE_BAYES,LASSO_1SE,LASSO_MIN,GLMNET_RIDGE_MIN,GLMNET_ELASTICNET_MIN)
modelsnames <- c("BSWiMS.model","NAIVE_BAYES","LASSO_1SE","LASSO_MIN",
"GLMNET_RIDGE_MIN","GLMNET_ELASTICNET_MIN")
20x cv using 70% training and 30% holdout (for LC models)
lc.cvlist <- list()
lc.filteredFitcv <- randomCV_V3(BRCASanJose,
"recurrence",
HLCM_EM,
trainFraction = 0.7,
repetitions = 20,
method = filteredFit,
hysteresis=0.1,
fitmethod=glm,
filtermethod=univariate_BinEnsemble,
filtermethod.control = list(pvalue=0.05),
family = "binomial")
lc.cvlist[["LC_filteredFit"]] <-lc.filteredFitcv
i=1 #
for (model in models){
modelname= paste0("LC_",modelsnames[i])
cv <- randomCV_V3(BRCASanJose,
"recurrence",
HLCM_EM,
trainSampleSets = lc.filteredFitcv$trainSamplesSets,
method = model,
hysteresis=0.1)
lc.cvlist[[modelname]] <-cv
i = i+1
}
save(lc.cvlist, file = "lc.cvlist.RData")
20x cv using 70% training and 30% holdout (for vanilla models)
cvlist <- list()
filteredFitcv <- randomCV(BRCASanJose,
"recurrence",
filteredFit,
trainSampleSets = lc.filteredFitcv$trainSamplesSets,
fitmethod=glm,
filtermethod=univariate_BinEnsemble,
filtermethod.control = list(pvalue=0.05),
family = "binomial")
cvlist[["filteredFit"]] <-filteredFitcv
save(filteredFitcv, file = "filteredFitcv.RData")
i=1 #starts from filteredfit
for (model in models){
modelname= modelsnames[i]
#beep()
cv <- randomCV(BRCASanJose,
"recurrence",
model,
trainSampleSets = lc.filteredFitcv$trainSamplesSets)
cvlist[[modelname]] <-cv
i = i+1
}
save(cvlist, file = "cvlist.RData")
beep()
ROC plots (latent class AUC vs vanilla AUC)
par(mfrow = c(1,2), cex = 1)#combine and adapt the cvlists into one combided
combined.cvlist <- combine.cvlist(lc.cvlist,cvlist)
cp.combined <- BinaryBenchmark(referenceCV = combined.cvlist)
save(cp.combined, file = "cp.combined.RData")