R Markdown

This project aims to work with data from UNICEF’s state of the World’s Children 2019 Statistical Tables and analyze the relationships among women empowerment, child nutrition,child mortality rate and GDP.

Analysis 1:Bivariate Relationship Between Women’s Participation in Economy and GDP:

For the purpose of this analysis two datasets named Social Protection and Equity and Women’s Economic Empowerment is selected from The UNICEF’s State of the World’s Children 2019 Statistical Tables.

EconomicIndicatorGDP1<-read.csv("https://raw.githubusercontent.com/maliat-hossain/UNICEF-Datasets/main/GDP.csv")
head(EconomicIndicatorGDP1)%>%
  kbl() %>%
  kable_material(c("striped"))
X X.1 X.2 X.3 X.4 X.5 X.6 X.7 X.8 X.9 X.10 X.11 X.12 X.13
TABLE 12. SOCIAL PROTECTION AND EQUITY NA
NA
Countries and areas Mothers with newborns receiving cash benefit (%) 2010?2018* Proportion of children covered by social protection 2010?2018* NA Distribution of Social Protection Benefits (%, 2010?2016*) Share of household income (%, 2010?2018*) Gini Coefficient 2010?2018* Palma Index of income inequality 2010?2018* GDP per capita (current US$) 2010?2018*
NA
NA bottom 40% top 20% bottom 20% bottom 40% top 20% bottom 20%
NA

The analysis only requires column 1 and 14. The columns are assigned name.

names(EconomicIndicatorGDP1)[1] <- "NameofCountries1"
names(EconomicIndicatorGDP1)[14] <- "GDP"

Column 1 and 14 is selected.

### selecting only Countris name and GDP from the EconomicIndicatorGDP1 dataset
RefEconomicIndicatorGDP1<-EconomicIndicatorGDP1 %>% dplyr::select(1, 14)
### removing unnecessary rows
RefEconomicIndicatorGDP1<-anti_join(RefEconomicIndicatorGDP1,RefEconomicIndicatorGDP1[1:3,])
## Joining, by = c("NameofCountries1", "GDP")

Unnecessary punctuation is removed.

RefEconomicIndicatorGDP1 <- filter(RefEconomicIndicatorGDP1,GDP!="?")
head(RefEconomicIndicatorGDP1)%>%
knitr::kable(caption = "Table 1:GDP by countries in 2019 ")%>%
  kableExtra::kable_styling(bootstrap_options = "striped")
Table 1:GDP by countries in 2019
NameofCountries1 GDP
Afghanistan 556.3
Albania 4532.9
Algeria 4048.3
Andorra 39134.4
Angola 4095.8
Antigua and Barbuda 15824.7

The data frame named “WOMEN’S ECONOMIC EMPOWERMENT” is downloaded.

Womenempowerment<-read.csv("https://raw.githubusercontent.com/maliat-hossain/UNICEF-Datasets/main/Table-16-Womens-EN-1.csv")
head(Womenempowerment)%>%
  kbl() %>%
  kable_material(c("striped"))
X X.1 X.2 X.3 X.4 X.5 X.6 X.7 X.8 X.9 X.10 X.11 X.12 X.13 X.14 X.15 X.16 X.17 X.18 X.19 X.20 X.21 X.22 X.23 X.24 X.25 X.26 X.27 X.28 X.29 X.30 X.31 X.32 X.33 X.34 X.35 X.36 X.37 X.38 X.39 X.40 X.41 X.42
NA TABLE 16. WOMEN’S ECONOMIC EMPOWERMENT NA NA NA
NA NA NA NA
NA Countries and areas Social Institutions and Gender Index (SIGI) 2019 Legal frameworks on gender equality in employment 2018 Maternity leave benefits 2018 Paternity leave benefits 2018 Demand for family planning satisfied with modern methods (%) 2013?2018* Educational attainment 2010?2017* Labour force participation rate 2010?2018* Unemployment rate 2010?2018* Mobile phone ownership 2014?2017* NA NA Financial inclusion 2014?2017* NA
NA upper secondary male female male female NA NA NA
NA male female rural urban total rural urban total rural urban total rural urban total male NA female NA male female NA
NA NA NA NA

The necessary column are selected.

Womenempowerment1<-Womenempowerment %>% dplyr::select(2, 17,23)

Name of the columns are assigned.

names(Womenempowerment1)[1] <- "NameofCountries1"
names(Womenempowerment1)[2] <- "Men_partcipation_rate_in_economy"
names(Womenempowerment1)[3] <- "Womenen_partcipation_rate_in_economy"

unnecessary rows and puntuation marks are removed.

Womenempowerment1<-anti_join(Womenempowerment1,Womenempowerment1[1:3,])
## Joining, by = c("NameofCountries1", "Men_partcipation_rate_in_economy", "Womenen_partcipation_rate_in_economy")
Womenempowerment1<-anti_join(Womenempowerment1,Womenempowerment1[1,])
## Joining, by = c("NameofCountries1", "Men_partcipation_rate_in_economy", "Womenen_partcipation_rate_in_economy")
Womenempowerment1 <- filter(Womenempowerment1,Men_partcipation_rate_in_economy!="?")
Womenempowerment1 <- filter(Womenempowerment1,Womenen_partcipation_rate_in_economy!="?")
head(Womenempowerment1)%>%
knitr::kable(caption = "Table 2:Women's participation in Economy ")%>%
  kableExtra::kable_styling(bootstrap_options = "striped")
Table 2:Women’s participation in Economy
NameofCountries1 Men_partcipation_rate_in_economy Womenen_partcipation_rate_in_economy
Afghanistan 73 21
Algeria 60 13
Angola 80 75
Armenia 71 53
Australia 71 60
Austria 67 56

Two data frames regarding the GDP and women’s participation in the economy is joined for the convinience of analysis.

fullJoinGDP <- full_join(RefEconomicIndicatorGDP1,Womenempowerment1,by="NameofCountries1")
View(fullJoinGDP)%>%
  kbl() %>%
  kable_material(c("striped"))

na values are removed from the dataframe.

fullJoinGDP<-na.omit(fullJoinGDP)

Rows from 1 to 135 only contains data regarding United Nation’s member countries.Summary values on the basis of continents are excluded for the purpose of analysis.

GDP_and_Womenempowerment1 <- fullJoinGDP[1:135,]
view(GDP_and_Womenempowerment1)%>%
knitr::kable(caption = "Table 3:Women's participation in Economy and GDP ")%>%
  kableExtra::kable_styling(bootstrap_options = "striped")
Table 3:Women’s participation in Economy and GDP
NameofCountries1 GDP Men_partcipation_rate_in_economy Womenen_partcipation_rate_in_economy
1 Afghanistan 556.3 73 21
3 Algeria 4048.3 60 13
5 Angola 4095.8 80 75
8 Armenia 3914.5 71 53
9 Australia 54093.6 71 60
10 Austria 47380.8 67 56
14 Bangladesh 1564.0 81 36
17 Belgium 43507.2 59 50
18 Belize 4956.8 79 49
19 Benin 827.4 74 70
20 Bhutan 3390.7 71 56
21 Bolivia (Plurinational State of) 3351.1 80 64
22 Bosnia and Herzegovina 5394.6 53 31
23 Botswana 7893.7 70 56
24 Brazil 9880.9 78 56
25 Brunei Darussalam 28572.1 69 56
26 Bulgaria 8228.0 62 49
27 Burkina Faso 642.0 75 58
28 Burundi 293.0 78 80
29 Cabo Verde 3295.3 63 49
30 Cambodia 1385.3 88 76
31 Cameroon 1421.6 78 67
32 Canada 45069.9 70 61
35 Chile 15037.4 71 49
37 Colombia 6375.9 80 57
38 Comoros 1312.4 51 33
39 Congo 1702.6 69 67
40 Costa Rica 11752.5 74 46
41 Côte d’Ivoire 1557.2 66 46
42 Croatia 13383.7 57 46
44 Cyprus 25760.8 68 57
45 Czechia 20379.9 69 53
46 Democratic Republic of the Congo 467.1 70 63
47 Denmark 57218.9 67 58
50 Dominican Republic 7222.6 76 49
51 Ecuador 6213.5 79 55
52 Egypt 2440.5 67 22
53 El Salvador 3902.2 77 46
56 Estonia 20200.4 71 57
57 Eswatini 3941.9 56 47
58 Ethiopia 768.0 85 75
59 Fiji 6006.4 77 39
60 Finland 45804.7 63 56
61 France 38679.1 60 52
63 Gambia 672.8 69 50
64 Georgia 4045.4 75 58
65 Germany 44681.1 67 56
66 Ghana 2025.9 59 55
67 Greece 18883.5 60 44
69 Guatemala 4470.6 85 39
70 Guinea 821.7 66 63
72 Guyana 4586.1 69 44
73 Haiti 765.6 74 54
74 Honduras 2432.9 84 46
75 Hungary 14278.9 66 49
76 Iceland 71314.8 86 78
77 India 1981.5 79 23
78 Indonesia 3836.9 82 52
79 Iran (Islamic Republic of) 5627.7 64 15
80 Iraq 5143.7 72 11
81 Ireland 68941.8 69 56
82 Israel 40543.6 68 60
83 Italy 32155.2 59 41
84 Jamaica 5060.5 73 61
88 Kenya 1568.2 78 71
91 Kyrgyzstan 1242.8 75 46
92 Lao People’s Democratic Republic 2423.8 45 37
93 Latvia 15684.6 68 56
96 Liberia 698.7 82 72
99 Lithuania 16809.6 68 57
100 Luxembourg 104498.7 64 56
101 Madagascar 448.4 89 84
102 Malawi 356.7 60 50
103 Malaysia 10117.6 80 54
104 Maldives 9801.6 78 47
105 Mali 828.6 81 55
106 Malta 27241.1 70 49
108 Mauritania 1161.8 63 28
110 Mexico 9281.1 77 43
113 Mongolia 3671.9 66 54
115 Morocco 3036.2 74 25
116 Mozambique 441.6 80 78
117 Myanmar 1249.8 77 48
118 Namibia 5646.5 63 55
120 Nepal 900.6 54 26
121 Netherlands 48482.8 70 59
122 New Zealand 42260.1 76 65
123 Nicaragua 2168.2 83 48
124 Niger 375.9 86 63
125 Nigeria 1968.6 56 49
126 North Macedonia 5417.6 67 43
127 Norway 75704.2 66 62
128 Oman 15170.4 88 30
129 Pakistan 1466.8 80 22
131 Panama 15166.1 76 50
132 Papua New Guinea 2640.2 49 48
133 Paraguay 5680.6 84 59
134 Peru 6700.8 83 69
135 Philippines 2981.9 72 45
136 Poland 13861.1 65 48
137 Portugal 21291.4 64 54
138 Qatar 61264.4 96 59
139 Republic of Korea 29742.8 74 53
140 Republic of Moldova 2724.5 46 41
141 Romania 10793.0 65 46
142 Russian Federation 10750.6 71 56
143 Rwanda 762.5 61 44
145 Samoa 4307.8 55 31
149 Senegal 1367.2 58 35
150 Serbia 6284.2 63 47
152 Sierra Leone 499.4 58 56
154 Slovakia 17579.3 68 52
155 Slovenia 23449.6 64 54
158 South Africa 6120.5 62 48
160 Spain 28208.3 64 52
161 Sri Lanka 4104.6 75 36
163 Sudan 3015.0 70 28
165 Sweden 53253.5 76 71
166 Switzerland 80333.4 74 63
167 Tajikistan 806.0 56 29
168 Thailand 6578.2 77 60
169 Timor-Leste 2000.6 73 61
170 Togo 619.1 49 61
173 Tunisia 3494.3 70 26
178 Uganda 631.5 62 45
179 Ukraine 2640.7 69 57
181 United Kingdom 39932.1 68 58
182 United Republic of Tanzania 1004.8 88 80
183 United States 59927.9 69 57
184 Uruguay 16437.2 72 56
186 Vanuatu 2976.1 78 60
187 Venezuela (Bolivarian Republic of) 16054.5 69 45
188 Viet Nam 2365.6 81 72
189 Yemen 963.5 65 6
190 Zambia 1534.9 45 28

The correlation between the women’s representation in the economy and GDP of a country is calculated. There is a correlation between women’s involvement in the economy and a strong GDP.

correlate<-data.frame(GDP_and_Womenempowerment1$GDP,GDP_and_Womenempowerment1$Womenen_partcipation_rate_in_economy)
correlate2<-rcorr(as.matrix(correlate))
correlate2
##                                                                GDP_and_Womenempowerment1.GDP
## GDP_and_Womenempowerment1.GDP                                                           1.00
## GDP_and_Womenempowerment1.Womenen_partcipation_rate_in_economy                          0.24
##                                                                GDP_and_Womenempowerment1.Womenen_partcipation_rate_in_economy
## GDP_and_Womenempowerment1.GDP                                                                                            0.24
## GDP_and_Womenempowerment1.Womenen_partcipation_rate_in_economy                                                           1.00
## 
## n= 135 
## 
## 
## P
##                                                                GDP_and_Womenempowerment1.GDP
## GDP_and_Womenempowerment1.GDP                                                               
## GDP_and_Womenempowerment1.Womenen_partcipation_rate_in_economy 0.0049                       
##                                                                GDP_and_Womenempowerment1.Womenen_partcipation_rate_in_economy
## GDP_and_Womenempowerment1.GDP                                  0.0049                                                        
## GDP_and_Womenempowerment1.Womenen_partcipation_rate_in_economy

Analysis 2:Bivariate analysis of nutritious food consumption and children’s mortality rate:

This analysis will quantify the relatinship between nutrituous food consumption and low birth rate.

This analysis includes datasets nutrition datasets from The State of the World’s Children 2019 Statistical Tables.

I have chosen the discussion dataset suggested by Maria Alejandra Ginorio, named Nutrition:Newborn,Infant,and Young children from UNICEF’s State of the World’s Children 2019 Statistical Tables.

Children_Nutrition_UNICEF<-read_csv("https://raw.githubusercontent.com/maliat-hossain/UNICEF-Nutrition-Data/main/Children%20Nutrition%20Facts.csv", locale = readr::locale(encoding = "latin1"))
## Warning: Missing column names filled in: 'X1' [1], 'X3' [3], 'X4' [4], 'X5' [5],
## 'X6' [6], 'X7' [7], 'X8' [8], 'X9' [9], 'X10' [10], 'X11' [11], 'X12' [12],
## 'X13' [13], 'X14' [14], 'X15' [15], 'X16' [16], 'X17' [17], 'X18' [18],
## 'X19' [19], 'X20' [20], 'X21' [21], 'X22' [22], 'X23' [23], 'X24' [24],
## 'X25' [25], 'X26' [26], 'X27' [27], 'X28' [28], 'X29' [29], 'X30' [30],
## 'X31' [31], 'X32' [32], 'X33' [33], 'X34' [34], 'X35' [35]
## 
## -- Column specification --------------------------------------------------------
## cols(
##   .default = col_character(),
##   X1 = col_logical(),
##   X27 = col_logical(),
##   X28 = col_logical(),
##   X29 = col_logical(),
##   X30 = col_logical(),
##   X31 = col_logical(),
##   X32 = col_logical(),
##   X33 = col_logical(),
##   X34 = col_logical(),
##   X35 = col_logical()
## )
## i Use `spec()` for the full column specifications.

Helpful column names are assigned to required columns for the analysis and required columns are selected using dplyr.

names(Children_Nutrition_UNICEF)[2] <- "NameoftheCountries"
names(Children_Nutrition_UNICEF)[3] <- "Low_Birthweight"
names(Children_Nutrition_UNICEF)[11] <- "Introduction_to_Solid_SemiSolid_soft_foods"
names(Children_Nutrition_UNICEF)[25] <- "Zero_Vegetable_or_Fruit_Consumption"
Children_Nutrition_UNICEF1<-Children_Nutrition_UNICEF %>% dplyr::select(2,3, 11,25)
view(Children_Nutrition_UNICEF1)%>%
  kbl() %>%
  kable_material(c("striped"))
NameoftheCountries Low_Birthweight Introduction_to_Solid_SemiSolid_soft_foods Zero_Vegetable_or_Fruit_Consumption
NA NA NA NA
Countries and areas Weight at birth NA NA
NA Low birthweight (%) 2015 Introduction to solid, semi-solid or soft foods (6<U+0096>8 months) (%) Zero vegetable or fruit consumption (6<U+0096>23 months) (%)
NA NA NA NA
NA NA NA NA
NA NA NA NA
Afghanistan <U+0096> 61 59
Albania 5 89 26
Algeria 7 77 <U+0096>
Andorra 7 <U+0096> <U+0096>
Angola 15 79 36
Anguilla <U+0096> <U+0096> <U+0096>
Antigua and Barbuda 9 <U+0096> <U+0096>
Argentina 7 97 <U+0096>
Armenia 9 90 22
Australia 7 <U+0096> <U+0096>
Austria 7 <U+0096> <U+0096>
Azerbaijan 7 77 38
Bahamas 13 <U+0096> <U+0096>
Bahrain 12 <U+0096> <U+0096>
Bangladesh 28 65 53
Barbados <U+0096> 90 <U+0096>
Belarus 5 95 <U+0096>
Belgium 7 <U+0096> <U+0096>
Belize 9 79 30
Benin 17 56 54
Bhutan 12 87 <U+0096>
Bolivia (Plurinational State of) 7 81 20
Bosnia and Herzegovina 3 76 <U+0096>
Botswana 16 73 <U+0096>
Brazil 8 94 <U+0096>
British Virgin Islands <U+0096> <U+0096> <U+0096>
Brunei Darussalam 11 <U+0096> <U+0096>
Bulgaria 10 <U+0096> <U+0096>
Burkina Faso 13 75 75
Burundi 15 86 9
Cabo Verde <U+0096> <U+0096> <U+0096>
Cambodia 12 82 35
Cameroon 12 83 42
Canada 6 <U+0096> <U+0096>
Central African Republic 15 94 22
Chad <U+0096> 59 70
Chile 6 <U+0096> <U+0096>
China 5 83 <U+0096>
Colombia 10 78 <U+0096>
Comoros 24 80 52
Congo 12 84 51
Cook Islands 3 <U+0096> <U+0096>
Costa Rica 7 90 <U+0096>
Côte d’Ivoire 15 65 44
Croatia 5 <U+0096> <U+0096>
Cuba 5 91 27
Cyprus <U+0096> <U+0096> <U+0096>
Czechia 8 <U+0096> <U+0096>
Democratic People’s Republic of Korea <U+0096> 78 <U+0096>
Democratic Republic of the Congo 11 79 29
Denmark 5 <U+0096> <U+0096>
Djibouti <U+0096> <U+0096> <U+0096>
Dominica <U+0096> <U+0096> <U+0096>
Dominican Republic 11 81 35
Ecuador 11 74 <U+0096>
Egypt <U+0096> 75 45
El Salvador 10 90 16
Equatorial Guinea <U+0096> <U+0096> <U+0096>
Eritrea <U+0096> 44 <U+0096>
Estonia 4 <U+0096> <U+0096>
Eswatini 10 90 <U+0096>
Ethiopia <U+0096> 60 69
Fiji <U+0096> <U+0096> <U+0096>
Finland 4 <U+0096> <U+0096>
France 7 <U+0096> <U+0096>
Gabon 14 82 52
Gambia 17 55 76
Georgia 6 85 <U+0096>
Germany 7 <U+0096> <U+0096>
Ghana 14 73 51
Greece 9 <U+0096> <U+0096>
Grenada <U+0096> <U+0096> <U+0096>
Guatemala 11 80 27
Guinea <U+0096> 54 85
Guinea-Bissau 21 57 44
Guyana 16 81 33
Haiti <U+0096> 91 55
Holy See <U+0096> <U+0096> <U+0096>
Honduras 11 86 36
Hungary 9 <U+0096> <U+0096>
Iceland 4 <U+0096> <U+0096>
India <U+0096> 46 55
Indonesia 10 86 18
Iran (Islamic Republic of) <U+0096> 76 <U+0096>
Iraq <U+0096> 85 25
Ireland 6 <U+0096> <U+0096>
Israel 8 <U+0096> <U+0096>
Italy 7 <U+0096> <U+0096>
Jamaica 15 64 <U+0096>
Japan 9 <U+0096> <U+0096>
Jordan 14 83 41
Kazakhstan 5 66 21
Kenya 11 80 29
Kiribati <U+0096> 70 <U+0096>
Kuwait 10 <U+0096> <U+0096>
Kyrgyzstan 6 91 14
Lao People’s Democratic Republic 17 87 36
Latvia 5 <U+0096> <U+0096>
Lebanon 9 <U+0096> <U+0096>
Lesotho 15 83 50
Liberia <U+0096> 47 39
Libya <U+0096> <U+0096> <U+0096>
Liechtenstein <U+0096> <U+0096> <U+0096>
Lithuania 5 <U+0096> <U+0096>
Luxembourg 7 <U+0096> <U+0096>
Madagascar 17 90 33
Malawi 14 85 23
Malaysia 11 <U+0096> <U+0096>
Maldives 12 97 15
Mali <U+0096> 42 70
Malta 6 <U+0096> <U+0096>
Marshall Islands <U+0096> 64 46
Mauritania <U+0096> 74 51
Mauritius 17 <U+0096> <U+0096>
Mexico 8 82 18
Micronesia (Federated States of) <U+0096> <U+0096> <U+0096>
Monaco 5 <U+0096> <U+0096>
Mongolia 5 97 37
Montenegro 5 95 9
Montserrat <U+0096> <U+0096> <U+0096>
Morocco 17 84 <U+0096>
Mozambique 14 95 36
Myanmar 12 75 56
Namibia 16 80 52
Nauru <U+0096> <U+0096> <U+0096>
Nepal 22 84 38
Netherlands 6 <U+0096> <U+0096>
New Zealand 6 <U+0096> <U+0096>
Nicaragua 11 89 <U+0096>
Niger <U+0096> 62 67
Nigeria <U+0096> 66 32
Niue <U+0096> <U+0096> <U+0096>
North Macedonia 9 87 <U+0096>
Norway 4 <U+0096> <U+0096>
Oman 11 95 <U+0096>
Pakistan <U+0096> 65 61
Palau <U+0096> <U+0096> <U+0096>
Panama 10 78 <U+0096>
Papua New Guinea <U+0096> <U+0096> <U+0096>
Paraguay 8 87 16
Peru 9 95 7
Philippines 20 89 22
Poland 6 <U+0096> <U+0096>
Portugal 9 <U+0096> <U+0096>
Qatar 7 74 <U+0096>
Republic of Korea 6 <U+0096> <U+0096>
Republic of Moldova 5 75 10
Romania 8 <U+0096> <U+0096>
Russian Federation 6 <U+0096> <U+0096>
Rwanda 8 57 25
Saint Kitts and Nevis <U+0096> <U+0096> <U+0096>
Saint Lucia <U+0096> <U+0096> <U+0096>
Saint Vincent and the Grenadines <U+0096> <U+0096> <U+0096>
Samoa <U+0096> 74 <U+0096>
San Marino 3 <U+0096> <U+0096>
Sao Tome and Principe 7 74 27
Saudi Arabia <U+0096> <U+0096> <U+0096>
Senegal 18 67 52
Serbia 5 97 3
Seychelles 12 <U+0096> <U+0096>
Sierra Leone 14 68 41
Singapore 10 <U+0096> <U+0096>
Slovakia 8 <U+0096> <U+0096>
Slovenia 6 <U+0096> <U+0096>
Solomon Islands <U+0096> <U+0096> <U+0096>
Somalia <U+0096> 17 <U+0096>
South Africa 14 83 37
South Sudan <U+0096> 42 <U+0096>
Spain 8 <U+0096> <U+0096>
Sri Lanka 16 88 <U+0096>
State of Palestine 8 90 27
Sudan <U+0096> 61 67
Suriname 15 79 <U+0096>
Sweden 2 <U+0096> <U+0096>
Switzerland 6 <U+0096> <U+0096>
Syrian Arab Republic <U+0096> 44 <U+0096>
Tajikistan 6 63 58
Thailand 11 85 22
Timor-Leste <U+0096> 63 35
Togo 16 67 45
Tokelau <U+0096> <U+0096> <U+0096>
Tonga <U+0096> <U+0096> <U+0096>
Trinidad and Tobago 12 56 <U+0096>
Tunisia 7 97 20
Turkey 11 75 <U+0096>
Turkmenistan 5 82 9
Turks and Caicos Islands <U+0096> <U+0096> <U+0096>
Tuvalu <U+0096> <U+0096> <U+0096>
Uganda <U+0096> 81 44
Ukraine 6 75 <U+0096>
United Arab Emirates 13 <U+0096> <U+0096>
United Kingdom 7 <U+0096> <U+0096>
United Republic of Tanzania 10 92 29
United States 8 <U+0096> <U+0096>
Uruguay 8 <U+0096> <U+0096>
Uzbekistan 5 47 <U+0096>
Vanuatu 11 72 <U+0096>
Venezuela (Bolivarian Republic of) 9 <U+0096> <U+0096>
Viet Nam 8 91 14
Yemen <U+0096> 69 66
Zambia 12 82 35
Zimbabwe 13 91 32
NA NA NA NA
SUMMARY NA NA NA
East Asia and Pacific 8 84 23
Europe and Central Asia 7 <U+0096> <U+0096>
Eastern Europe and Central Asia 7 75 <U+0096>
Western Europe 7 <U+0096> <U+0096>
Latin America and Caribbean 9 84 21
Middle East and North Africa 11 78 42
North America 8 <U+0096> <U+0096>
South Asia 27 52 55
Sub-Saharan Africa 14 72 42
Eastern and Southern Africa 14 77 44
West and Central Africa 14 68 40
Least developed countries 16 72 49
World 15 69 44
NA NA NA NA
For a complete list of countries and areas in the regions, subregions and country categories, see page 182 or visit <data.unicef.org/regionalclassifications>. NA NA NA
It is not advisable to compare data from consecutive editions of The State of the World<U+0092>s Children. NA NA NA
NA NA NA NA
NOTES NA NA NA
<U+0096> Data not available. NA NA NA
x Data refer to years or periods other than those specified in the column heading. Such data are not included in the calculation of regional and global averages. Estimates from years prior to 2000 are not displayed. NA NA NA
p Based on small denominators (typically 25-49 unweighted cases). No data based on fewer than 25 unweighted cases are displayed. NA NA NA
q Regional estimates for East Asia and Pacific exclude China, Latin America and the Caribbean exclude Brazil, Eastern Europe and Central Asia exclude the Russian Federation. NA NA NA
r Disaggregated data are from different sources than the data presented for all children for the same indicator. NA NA NA
zThe estimate is based on partial data for the most recent survey, therefore modeled estimates are not shown for the individual country but have been used in regional and global estimates. NA NA NA
  • Data refer to the most recent year available during the period specified in the column heading.
NA NA NA
NA NA NA NA
DEFINITIONS OF THE INDICATORS NA NA NA
Low birthweight <U+0096> Percentage of infants weighing less than 2,500 grams at birth. NA NA NA
Unweighed at birth <U+0096> Percentage of births without a birthweight in the data source; Note that (i) estimates from household surveys include live births among women age 15<U+0096>49 years in the survey reference period (e.g. last 2 years) for which a birthweight was not available from an official document (e.g. health card) or could not be recalled by the respondent at the time of interview and may have been recalculated to count birthweights <250g and >5500g as missing and (ii) estimates from administrative sources (e.g. Health Management Information Systems) were calculated using numerator data from the country administrative source and denominator data were the number of annual births according to the United Nations Population Division World Population Prospects, 2017 edition. These estimates include unweighed births and weighed births not recorded in the system. NA NA NA
Early initiation of breastfeeding <U+0096> Percentage of children born in the last 24 months who were put to the breast within one hour of birth. NA NA NA
Exclusive breastfeeding (<6 months) <U+0096> Percentage of infants 0-5 months of age who were fed exclusively with breastmilk during the previous day. NA NA NA
Continued breastfeeding (12-23 months) <U+0096> Percentage of children 12-23 months of age who were fed with breastmilk during the previous day. NA NA NA
Introduction of solid, semi-solid or soft foods (6<U+0096>8 months) <U+0096> Percentage of infants 6-8 months of age who were fed with solid, semi-solid or soft food during the previous day. NA NA NA
Minimum Diet Diversity (6<U+0096>23 months) <U+0096> Percentage of children 6-23 months of age who received foods from at least 5 out of 8 defined food groups during the previous day. NA NA NA
Minimum Meal Frequency (6<U+0096>23 months) <U+0096> Percentage of children 6-23 months of age who received solid, semi-solid, or soft foods (but also including milk feeds for non-breastfed children) the minimum number of times or more during the previous day. NA NA NA
Minimum Acceptable Diet (6<U+0096>23 months) <U+0096> Percentage of children 6-23 months of age who received a minimum acceptable diet during the previous day. NA NA NA
Zero vegetable or fruit consumption (6<U+0096>23 months) <U+0096> Percentage of children 6-23 months of age who did not consume any vegetables or fruits during the previous day. NA NA NA
NA NA NA NA
MAIN DATA SOURCES NA NA NA
Low birthweight <U+0096> Modelled estimates from UNICEF and WHO. Last update: May 2019. NA NA NA
Unweighed at birth <U+0096> Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS), other national household surveys, data from routine reporting systems. Last update: June 2019. NA NA NA
Infant and young child feeding (0-23 months) <U+0096> DHS, MICS and other national household surveys. Last update: June 2019. NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA

Unnecessary rows are removed.

Children_Nutrition_UNICEF1<-anti_join(Children_Nutrition_UNICEF1,Children_Nutrition_UNICEF1[1:5,])
## Joining, by = c("NameoftheCountries", "Low_Birthweight", "Introduction_to_Solid_SemiSolid_soft_foods", "Zero_Vegetable_or_Fruit_Consumption")

Necessary rows containg countries name are selected.

Children_Nutrition_UNICEF2<-Children_Nutrition_UNICEF1[1:196,]
head(Children_Nutrition_UNICEF2)%>%
knitr::kable(caption = "Table 4:Understanding of Nutritious Diet for Children and Low Birthweight ")%>%
  kableExtra::kable_styling(bootstrap_options = "striped")
Table 4:Understanding of Nutritious Diet for Children and Low Birthweight
NameoftheCountries Low_Birthweight Introduction_to_Solid_SemiSolid_soft_foods Zero_Vegetable_or_Fruit_Consumption
Afghanistan <U+0096> 61 59
Albania 5 89 26
Algeria 7 77 <U+0096>
Andorra 7 <U+0096> <U+0096>
Angola 15 79 36
Anguilla <U+0096> <U+0096> <U+0096>

Unnecessary punctuation is removed first transforming the values as numeric. After the transformation the punctuation is replaced as na. na values are omitted afterwords.

Children_Nutrition_UNICEF2$Low_Birthweight <- as.numeric(Children_Nutrition_UNICEF2$Low_Birthweight)
## Warning: NAs introduced by coercion
Children_Nutrition_UNICEF2[!is.na(Children_Nutrition_UNICEF2$Low_Birthweight), ]
## # A tibble: 142 x 4
##    NameoftheCountri~ Low_Birthweight Introduction_to_Solid~ Zero_Vegetable_or_F~
##    <chr>                       <dbl> <chr>                  <chr>               
##  1 Albania                         5 "89"                   "26"                
##  2 Algeria                         7 "77"                   "\u0096"            
##  3 Andorra                         7 "\u0096"               "\u0096"            
##  4 Angola                         15 "79"                   "36"                
##  5 Antigua and Barb~               9 "\u0096"               "\u0096"            
##  6 Argentina                       7 "97"                   "\u0096"            
##  7 Armenia                         9 "90"                   "22"                
##  8 Australia                       7 "\u0096"               "\u0096"            
##  9 Austria                         7 "\u0096"               "\u0096"            
## 10 Azerbaijan                      7 "77"                   "38"                
## # ... with 132 more rows
Children_Nutrition_UNICEF2$Introduction_to_Solid_SemiSolid_soft_foods<- as.numeric(Children_Nutrition_UNICEF2$Introduction_to_Solid_SemiSolid_soft_foods)
## Warning: NAs introduced by coercion
Children_Nutrition_UNICEF2[!is.na(Children_Nutrition_UNICEF2$Introduction_to_Solid_SemiSolid_soft_foods), ]
## # A tibble: 114 x 4
##    NameoftheCountri~ Low_Birthweight Introduction_to_Solid~ Zero_Vegetable_or_F~
##    <chr>                       <dbl>                  <dbl> <chr>               
##  1 Afghanistan                    NA                     61 "59"                
##  2 Albania                         5                     89 "26"                
##  3 Algeria                         7                     77 "\u0096"            
##  4 Angola                         15                     79 "36"                
##  5 Argentina                       7                     97 "\u0096"            
##  6 Armenia                         9                     90 "22"                
##  7 Azerbaijan                      7                     77 "38"                
##  8 Bangladesh                     28                     65 "53"                
##  9 Barbados                       NA                     90 "\u0096"            
## 10 Belarus                         5                     95 "\u0096"            
## # ... with 104 more rows
Children_Nutrition_UNICEF2$Zero_Vegetable_or_Fruit_Consumption<- as.numeric(Children_Nutrition_UNICEF2$Zero_Vegetable_or_Fruit_Consumption)
## Warning: NAs introduced by coercion
Children_Nutrition_UNICEF2[!is.na(Children_Nutrition_UNICEF2$Zero_Vegetable_or_Fruit_Consumption), ]
## # A tibble: 79 x 4
##    NameoftheCountries  Low_Birthweight Introduction_to_Soli~ Zero_Vegetable_or_~
##    <chr>                         <dbl>                 <dbl>               <dbl>
##  1 Afghanistan                      NA                    61                  59
##  2 Albania                           5                    89                  26
##  3 Angola                           15                    79                  36
##  4 Armenia                           9                    90                  22
##  5 Azerbaijan                        7                    77                  38
##  6 Bangladesh                       28                    65                  53
##  7 Belize                            9                    79                  30
##  8 Benin                            17                    56                  54
##  9 Bolivia (Plurinati~               7                    81                  20
## 10 Burkina Faso                     13                    75                  75
## # ... with 69 more rows
head(Children_Nutrition_UNICEF2)
## # A tibble: 6 x 4
##   NameoftheCountri~ Low_Birthweight Introduction_to_Solid_~ Zero_Vegetable_or_F~
##   <chr>                       <dbl>                   <dbl>                <dbl>
## 1 Afghanistan                    NA                      61                   59
## 2 Albania                         5                      89                   26
## 3 Algeria                         7                      77                   NA
## 4 Andorra                         7                      NA                   NA
## 5 Angola                         15                      79                   36
## 6 Anguilla                       NA                      NA                   NA
Children_Nutrition_UNICEF2<-na.omit(Children_Nutrition_UNICEF2)
head(Children_Nutrition_UNICEF2)
## # A tibble: 6 x 4
##   NameoftheCountri~ Low_Birthweight Introduction_to_Solid_~ Zero_Vegetable_or_F~
##   <chr>                       <dbl>                   <dbl>                <dbl>
## 1 Albania                         5                      89                   26
## 2 Angola                         15                      79                   36
## 3 Armenia                         9                      90                   22
## 4 Azerbaijan                      7                      77                   38
## 5 Bangladesh                     28                      65                   53
## 6 Belize                          9                      79                   30

Only Latin Americans countries are selected for this analysis.After removing countries containg na values remaing Latin American countries are selected through filteration.

Countries_String<-"Belize|Cuba|Dominican Republic|El Salvador|Guatemala|Mexico|Paraguay|Peru"
Latin_America_Children_Nutrition<-Children_Nutrition_UNICEF2 %>%
     filter(str_detect(NameoftheCountries,Countries_String))
view(Latin_America_Children_Nutrition)%>%
knitr::kable(caption = "Table 5:Analysis of Latin American  Children's Low Birthweight and Nutritious Diet ")%>%
  kableExtra::kable_styling(bootstrap_options = "striped")
Table 5:Analysis of Latin American Children’s Low Birthweight and Nutritious Diet
NameoftheCountries Low_Birthweight Introduction_to_Solid_SemiSolid_soft_foods Zero_Vegetable_or_Fruit_Consumption
Belize 9 79 30
Cuba 5 91 27
Dominican Republic 11 81 35
El Salvador 10 90 16
Guatemala 11 80 27
Mexico 8 82 18
Paraguay 8 87 16
Peru 9 95 7

The pearson’s correlation between the nutrious food and low birthweight is calculated to measure the bivariate relatiship between low birthweight and nutritious food consumption in the Latin American countries.However, the correlation is not strong enough.

correlate1<-data.frame(Latin_America_Children_Nutrition$Low_Birthweight,Latin_America_Children_Nutrition$Zero_Vegetable_or_Fruit_Consumption)
correlate3<-rcorr(as.matrix(correlate1))
correlate3
##                                                                      Latin_America_Children_Nutrition.Low_Birthweight
## Latin_America_Children_Nutrition.Low_Birthweight                                                                 1.00
## Latin_America_Children_Nutrition.Zero_Vegetable_or_Fruit_Consumption                                             0.16
##                                                                      Latin_America_Children_Nutrition.Zero_Vegetable_or_Fruit_Consumption
## Latin_America_Children_Nutrition.Low_Birthweight                                                                                     0.16
## Latin_America_Children_Nutrition.Zero_Vegetable_or_Fruit_Consumption                                                                 1.00
## 
## n= 8 
## 
## 
## P
##                                                                      Latin_America_Children_Nutrition.Low_Birthweight
## Latin_America_Children_Nutrition.Low_Birthweight                                                                     
## Latin_America_Children_Nutrition.Zero_Vegetable_or_Fruit_Consumption 0.7086                                          
##                                                                      Latin_America_Children_Nutrition.Zero_Vegetable_or_Fruit_Consumption
## Latin_America_Children_Nutrition.Low_Birthweight                     0.7086                                                              
## Latin_America_Children_Nutrition.Zero_Vegetable_or_Fruit_Consumption
ggplot(data =Latin_America_Children_Nutrition,aes(y=Low_Birthweight,x=Zero_Vegetable_or_Fruit_Consumption) )+
  geom_point()

correlate4<-data.frame(Latin_America_Children_Nutrition$Low_Birthweight,Latin_America_Children_Nutrition$Introduction_to_Solid_SemiSolid_soft_foods)
correlate5<-rcorr(as.matrix(correlate4))
correlate5
##                                                                             Latin_America_Children_Nutrition.Low_Birthweight
## Latin_America_Children_Nutrition.Low_Birthweight                                                                        1.00
## Latin_America_Children_Nutrition.Introduction_to_Solid_SemiSolid_soft_foods                                            -0.43
##                                                                             Latin_America_Children_Nutrition.Introduction_to_Solid_SemiSolid_soft_foods
## Latin_America_Children_Nutrition.Low_Birthweight                                                                                                  -0.43
## Latin_America_Children_Nutrition.Introduction_to_Solid_SemiSolid_soft_foods                                                                        1.00
## 
## n= 8 
## 
## 
## P
##                                                                             Latin_America_Children_Nutrition.Low_Birthweight
## Latin_America_Children_Nutrition.Low_Birthweight                                                                            
## Latin_America_Children_Nutrition.Introduction_to_Solid_SemiSolid_soft_foods 0.2834                                          
##                                                                             Latin_America_Children_Nutrition.Introduction_to_Solid_SemiSolid_soft_foods
## Latin_America_Children_Nutrition.Low_Birthweight                            0.2834                                                                     
## Latin_America_Children_Nutrition.Introduction_to_Solid_SemiSolid_soft_foods
ggplot(data =Latin_America_Children_Nutrition,aes(y=Low_Birthweight,x=Introduction_to_Solid_SemiSolid_soft_foods) )+
  geom_point()

Analysis3:Bivariate relationship between Child Mortality Rate and GDP:

For this analysis Child mortality rate from the UNICEF’s The State of the World’s Children 2019 Statistical Tables is selected.

Child_Mortality_Rate<-read.csv("https://raw.githubusercontent.com/maliat-hossain/UNICEF-Datasets/main/Table-2-Child-Mortality-EN.csv")
head(Child_Mortality_Rate)%>%
  kbl() %>%
  kable_material(c("striped"))
TABLE.2..CHILD.MORTALITY X X.1 X.2 X.3 X.4 X.5 X.6 X.7 X.8 X.9 X.10 X.11 X.12 X.13 X.14 X.15 X.16 X.17 X.18 X.19 X.20 X.21 X.22 X.23 X.24 X.25 X.26 X.27 X.28 X.29 X.30 X.31 X.32 X.33
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Countries and areas Under-5 mortality rate (deaths per 1,000 live births) NA NA NA Annual rate of reduction in under-5 mortality rate (%) 2000–2018 NA Under-5 mortality rate by sex (deaths per 1,000 live births) 2018 NA NA Infant mortality rate (deaths per 1,000 live births) NA NA Neonatal mortality rate (deaths per 1,000 live births) NA NA NA Probability of dying among children aged 5–14 (deaths per 1,000 children aged 5) NA NA Annual number of under-5 deaths (thousands) 2018 NA Annual number of neonatal deaths (thousands) 2018 NA Neonatal deaths as proportion of all under-5 deaths (%) 2018 NA Number of deaths among children aged 5–14 (thousands) 2018 NA
1990 NA 2000 NA 2018 NA NA male NA female NA 1990 NA 2018 NA 1990 NA 2000 NA 2018 NA 1990 NA 2018 NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan 179 NA 129 NA 62 NA 4.1 NA 66 NA 59 NA 121 NA 48 NA 75 NA 61 NA 37 NA 16 NA 5 NA 74 NA 45 NA 60 NA 5 NA
Albania 41 NA 26 NA 9 NA 6.0 NA 9 NA 8 NA 35 NA 8 NA 13 NA 12 NA 7 NA 7 NA 2 NA 0 NA 0 NA 74 NA 0 NA

Required columns are selected and named. Children’s mortality rate from the year of 2018 is selected.

names(Child_Mortality_Rate)[1] <- "NameofCountries1"
names(Child_Mortality_Rate)[6] <- "mortality_rate"
head(Child_Mortality_Rate)%>%
knitr::kable(caption = "Table 6:Children's Mortality Rate ")%>%
  kableExtra::kable_styling(bootstrap_options = "striped")
Table 6:Children’s Mortality Rate
NameofCountries1 X X.1 X.2 X.3 mortality_rate X.5 X.6 X.7 X.8 X.9 X.10 X.11 X.12 X.13 X.14 X.15 X.16 X.17 X.18 X.19 X.20 X.21 X.22 X.23 X.24 X.25 X.26 X.27 X.28 X.29 X.30 X.31 X.32 X.33
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Countries and areas Under-5 mortality rate (deaths per 1,000 live births) NA NA NA Annual rate of reduction in under-5 mortality rate (%) 2000–2018 NA Under-5 mortality rate by sex (deaths per 1,000 live births) 2018 NA NA Infant mortality rate (deaths per 1,000 live births) NA NA Neonatal mortality rate (deaths per 1,000 live births) NA NA NA Probability of dying among children aged 5–14 (deaths per 1,000 children aged 5) NA NA Annual number of under-5 deaths (thousands) 2018 NA Annual number of neonatal deaths (thousands) 2018 NA Neonatal deaths as proportion of all under-5 deaths (%) 2018 NA Number of deaths among children aged 5–14 (thousands) 2018 NA
1990 NA 2000 NA 2018 NA NA male NA female NA 1990 NA 2018 NA 1990 NA 2000 NA 2018 NA 1990 NA 2018 NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan 179 NA 129 NA 62 NA 4.1 NA 66 NA 59 NA 121 NA 48 NA 75 NA 61 NA 37 NA 16 NA 5 NA 74 NA 45 NA 60 NA 5 NA
Albania 41 NA 26 NA 9 NA 6.0 NA 9 NA 8 NA 35 NA 8 NA 13 NA 12 NA 7 NA 7 NA 2 NA 0 NA 0 NA 74 NA 0 NA
RefChild_Mortality_Rate<-Child_Mortality_Rate %>% dplyr::select(1, 6)
view(RefChild_Mortality_Rate)%>%
  kbl() %>%
  kable_material(c("striped"))
NameofCountries1 mortality_rate
Countries and areas
2018
Afghanistan 62
Albania 9
Algeria 23
Andorra 3
Angola 77
Anguilla ?
Antigua and Barbuda 6
Argentina 10
Armenia 12
Australia 4
Austria 4
Azerbaijan 22
Bahamas 10
Bahrain 7
Bangladesh 30
Barbados 12
Belarus 3
Belgium 4
Belize 13
Benin 93
Bhutan 30
Bolivia (Plurinational State of) 27
Bosnia and Herzegovina 6
Botswana 36
Brazil 14
British Virgin Islands ?
Brunei Darussalam 12
Bulgaria 7
Burkina Faso 76
Burundi 58
Cabo Verde 19
Cambodia 28
Cameroon 76
Canada 5
Central African Republic 116
Chad 119
Chile 7
China 9
Colombia 14
Comoros 67
Congo 50
Cook Islands 8
Costa Rica 9
Côte d’Ivoire 81
Croatia 5
Cuba 5
Cyprus 2
Czechia 3
Democratic People’s Republic of Korea 18
Democratic Republic of the Congo 88
Denmark 4
Djibouti 59
Dominica 36
Dominican Republic 29
Ecuador 14
Egypt 21
El Salvador 14
Equatorial Guinea 85
Eritrea 42
Estonia 3
Eswatini 54
Ethiopia 55
Fiji 26
Finland 2
France 4
Gabon 45
Gambia 58
Georgia 10
Germany 4
Ghana 48
Greece 4
Grenada 15
Guatemala 26
Guinea 101
Guinea-Bissau 81
Guyana 30
Haiti 65
Holy See ?
Honduras 18
Hungary 4
Iceland 2
India 37
Indonesia 25
Iran (Islamic Republic of) 14
Iraq 27
Ireland 4
Israel 4
Italy 3
Jamaica 14
Japan 2
Jordan 16
Kazakhstan 10
Kenya 41
Kiribati 53
Kuwait 8
Kyrgyzstan 19
Lao People’s Democratic Republic 47
Latvia 4
Lebanon 7
Lesotho 81
Liberia 71
Libya 12
Liechtenstein ?
Lithuania 4
Luxembourg 2
Madagascar 54
Malawi 50
Malaysia 8
Maldives 9
Mali 98
Malta 7
Marshall Islands 33
Mauritania 76
Mauritius 16
Mexico 13
Micronesia (Federated States of) 31
Monaco 3
Mongolia 16
Montenegro 3
Montserrat ?
Morocco 22
Mozambique 73
Myanmar 46
Namibia 40
Nauru 32
Nepal 32
Netherlands 4
New Zealand 6
Nicaragua 18
Niger 84
Nigeria 120
Niue 24
North Macedonia 10
Norway 3
Oman 11
Pakistan 69
Palau 18
Panama 15
Papua New Guinea 48
Paraguay 20
Peru 14
Philippines 28
Poland 4
Portugal 4
Qatar 7
Republic of Korea 3
Republic of Moldova 16
Romania 7
Russian Federation 7
Rwanda 35
Saint Kitts and Nevis 12
Saint Lucia 17
Saint Vincent and the Grenadines 16
Samoa 16
San Marino 2
Sao Tome and Principe 31
Saudi Arabia 7
Senegal 44
Serbia 6
Seychelles 14
Sierra Leone 105
Singapore 3
Slovakia 6
Slovenia 2
Solomon Islands 20
Somalia 122
South Africa 34
South Sudan 99
Spain 3
Sri Lanka 7
State of Palestine 20
Sudan 60
Suriname 19
Sweden 3
Switzerland 4
Syrian Arab Republic 17
Tajikistan 35
Thailand 9
Timor-Leste 46
Togo 70
Tokelau ?
Tonga 16
Trinidad and Tobago 18
Tunisia 17
Turkey 11
Turkmenistan 46
Turks and Caicos Islands ?
Tuvalu 24
Uganda 46
Ukraine 9
United Arab Emirates 8
United Kingdom 4
United Republic of Tanzania 53
United States 7
Uruguay 8
Uzbekistan 21
Vanuatu 26
Venezuela (Bolivarian Republic of) 25
Viet Nam 21
Yemen 55
Zambia 58
Zimbabwe 46
SUMMARY
East Asia and Pacific 15
Europe and Central Asia 9
Eastern Europe and Central Asia 13
Western Europe 4
Latin America and Caribbean 16
Middle East and North Africa 22
North America 6
South Asia 42
Sub-Saharan Africa 78
Eastern and Southern Africa 57
West and Central Africa 97
Least developed countries 64
World 39
For a complete list of countries and areas in the regions, subregions and country categories, see page 182 or visit <data.unicef.org/regionalclassifications>.
It is not advisable to compare data from consecutive editions of The State of the World’s Children.
NOTES
? Data not available.
DEFINITIONS OF THE INDICATORS
Under-5 mortality rate – Probability of dying between birth and exactly 5 years of age, expressed per 1,000 live births.
Infant mortality rate – Probability of dying between birth and exactly 1 year of age, expressed per 1,000 live births.
Neonatal mortality rate – Probability of dying during the first 28 days of life, expressed per 1,000 live births.
Probability of dying among children aged 5–14 – Probability of dying at age 5–14 years expressed per 1,000 children aged 5.
MAIN DATA SOURCES
Under-5, infant, neonatal and age 5–14 mortality rates – United Nations Inter-agency Group for Child Mortality Estimation (UNICEF, World Health Organization, United Nations Population Division and the World Bank Group). Last update: September 2019.
Under-5 deaths, neonatal deaths and deaths aged 5–14 – United Nations Inter-agency Group for Child Mortality Estimation (UNICEF, World Health Organization, United Nations Population Division and the World Bank Group). Last update: September 2019.
##RefChild_Mortality_Rate%>%
 ## kbl() %>%
  ##kable_material(c("striped"))
### removing unnecessary rows
RefChild_Mortality_Rate<-anti_join(RefChild_Mortality_Rate,RefChild_Mortality_Rate[1:3,])
## Joining, by = c("NameofCountries1", "mortality_rate")
head(RefChild_Mortality_Rate)%>%
  kbl() %>%
  kable_material(c("striped"))
NameofCountries1 mortality_rate
Afghanistan 62
Albania 9
Algeria 23
Andorra 3
Angola 77
Anguilla ?

puncuations from the datasets are removed.

RefChild_Mortality_Rate$mortality_rate<-as.numeric(RefChild_Mortality_Rate$mortality_rate)
## Warning: NAs introduced by coercion
RefChild_Mortality_Rate[!is.na(RefChild_Mortality_Rate$mortality_rate), ]
##                          NameofCountries1 mortality_rate
## 1                             Afghanistan             62
## 2                                 Albania              9
## 3                                 Algeria             23
## 4                                 Andorra              3
## 5                                  Angola             77
## 7                     Antigua and Barbuda              6
## 8                               Argentina             10
## 9                                 Armenia             12
## 10                              Australia              4
## 11                                Austria              4
## 12                             Azerbaijan             22
## 13                                Bahamas             10
## 14                                Bahrain              7
## 15                             Bangladesh             30
## 16                               Barbados             12
## 17                                Belarus              3
## 18                                Belgium              4
## 19                                 Belize             13
## 20                                  Benin             93
## 21                                 Bhutan             30
## 22       Bolivia (Plurinational State of)             27
## 23                 Bosnia and Herzegovina              6
## 24                               Botswana             36
## 25                                 Brazil             14
## 27                      Brunei Darussalam             12
## 28                               Bulgaria              7
## 29                           Burkina Faso             76
## 30                                Burundi             58
## 31                             Cabo Verde             19
## 32                               Cambodia             28
## 33                               Cameroon             76
## 34                                 Canada              5
## 35               Central African Republic            116
## 36                                   Chad            119
## 37                                  Chile              7
## 38                                  China              9
## 39                               Colombia             14
## 40                                Comoros             67
## 41                                  Congo             50
## 42                           Cook Islands              8
## 43                             Costa Rica              9
## 44                          Côte d'Ivoire             81
## 45                                Croatia              5
## 46                                   Cuba              5
## 47                                 Cyprus              2
## 48                                Czechia              3
## 49  Democratic People's Republic of Korea             18
## 50       Democratic Republic of the Congo             88
## 51                                Denmark              4
## 52                               Djibouti             59
## 53                               Dominica             36
## 54                     Dominican Republic             29
## 55                                Ecuador             14
## 56                                  Egypt             21
## 57                            El Salvador             14
## 58                      Equatorial Guinea             85
## 59                                Eritrea             42
## 60                                Estonia              3
## 61                               Eswatini             54
## 62                               Ethiopia             55
## 63                                   Fiji             26
## 64                                Finland              2
## 65                                 France              4
## 66                                  Gabon             45
## 67                                 Gambia             58
## 68                                Georgia             10
## 69                                Germany              4
## 70                                  Ghana             48
## 71                                 Greece              4
## 72                                Grenada             15
## 73                              Guatemala             26
## 74                                 Guinea            101
## 75                          Guinea-Bissau             81
## 76                                 Guyana             30
## 77                                  Haiti             65
## 79                               Honduras             18
## 80                                Hungary              4
## 81                                Iceland              2
## 82                                  India             37
## 83                              Indonesia             25
## 84             Iran (Islamic Republic of)             14
## 85                                   Iraq             27
## 86                                Ireland              4
## 87                                 Israel              4
## 88                                  Italy              3
## 89                                Jamaica             14
## 90                                  Japan              2
## 91                                 Jordan             16
## 92                             Kazakhstan             10
## 93                                  Kenya             41
## 94                               Kiribati             53
## 95                                 Kuwait              8
## 96                             Kyrgyzstan             19
## 97       Lao People's Democratic Republic             47
## 98                                 Latvia              4
## 99                                Lebanon              7
## 100                               Lesotho             81
## 101                               Liberia             71
## 102                                 Libya             12
## 104                             Lithuania              4
## 105                            Luxembourg              2
## 106                            Madagascar             54
## 107                                Malawi             50
## 108                              Malaysia              8
## 109                              Maldives              9
## 110                                  Mali             98
## 111                                 Malta              7
## 112                      Marshall Islands             33
## 113                            Mauritania             76
## 114                             Mauritius             16
## 115                                Mexico             13
## 116      Micronesia (Federated States of)             31
## 117                                Monaco              3
## 118                              Mongolia             16
## 119                            Montenegro              3
## 121                               Morocco             22
## 122                            Mozambique             73
## 123                               Myanmar             46
## 124                               Namibia             40
## 125                                 Nauru             32
## 126                                 Nepal             32
## 127                           Netherlands              4
## 128                           New Zealand              6
## 129                             Nicaragua             18
## 130                                 Niger             84
## 131                               Nigeria            120
## 132                                  Niue             24
## 133                       North Macedonia             10
## 134                                Norway              3
## 135                                  Oman             11
## 136                              Pakistan             69
## 137                                 Palau             18
## 138                                Panama             15
## 139                      Papua New Guinea             48
## 140                              Paraguay             20
## 141                                  Peru             14
## 142                           Philippines             28
## 143                                Poland              4
## 144                              Portugal              4
## 145                                 Qatar              7
## 146                     Republic of Korea              3
## 147                   Republic of Moldova             16
## 148                               Romania              7
## 149                    Russian Federation              7
## 150                                Rwanda             35
## 151                 Saint Kitts and Nevis             12
## 152                           Saint Lucia             17
## 153      Saint Vincent and the Grenadines             16
## 154                                 Samoa             16
## 155                            San Marino              2
## 156                 Sao Tome and Principe             31
## 157                          Saudi Arabia              7
## 158                               Senegal             44
## 159                                Serbia              6
## 160                            Seychelles             14
## 161                          Sierra Leone            105
## 162                             Singapore              3
## 163                              Slovakia              6
## 164                              Slovenia              2
## 165                       Solomon Islands             20
## 166                               Somalia            122
## 167                          South Africa             34
## 168                           South Sudan             99
## 169                                 Spain              3
## 170                             Sri Lanka              7
## 171                    State of Palestine             20
## 172                                 Sudan             60
## 173                              Suriname             19
## 174                                Sweden              3
## 175                           Switzerland              4
## 176                  Syrian Arab Republic             17
## 177                            Tajikistan             35
## 178                              Thailand              9
## 179                           Timor-Leste             46
## 180                                  Togo             70
## 182                                 Tonga             16
## 183                   Trinidad and Tobago             18
## 184                               Tunisia             17
## 185                                Turkey             11
## 186                          Turkmenistan             46
## 188                                Tuvalu             24
## 189                                Uganda             46
## 190                               Ukraine              9
## 191                  United Arab Emirates              8
## 192                        United Kingdom              4
## 193           United Republic of Tanzania             53
## 194                         United States              7
## 195                               Uruguay              8
## 196                            Uzbekistan             21
## 197                               Vanuatu             26
## 198    Venezuela (Bolivarian Republic of)             25
## 199                              Viet Nam             21
## 200                                 Yemen             55
## 201                                Zambia             58
## 202                              Zimbabwe             46
## 204                 East Asia and Pacific             15
## 205               Europe and Central Asia              9
## 206       Eastern Europe and Central Asia             13
## 207                        Western Europe              4
## 208           Latin America and Caribbean             16
## 209          Middle East and North Africa             22
## 210                         North America              6
## 211                            South Asia             42
## 212                    Sub-Saharan Africa             78
## 213           Eastern and Southern Africa             57
## 214               West and Central Africa             97
## 215             Least developed countries             64
## 216                                 World             39
view(RefChild_Mortality_Rate)%>%
knitr::kable(caption = "Table 6:Children's Mortality rate around the world in 2018 ")%>%
  kableExtra::kable_styling(bootstrap_options = "striped")
Table 6:Children’s Mortality rate around the world in 2018
NameofCountries1 mortality_rate
Afghanistan 62
Albania 9
Algeria 23
Andorra 3
Angola 77
Anguilla NA
Antigua and Barbuda 6
Argentina 10
Armenia 12
Australia 4
Austria 4
Azerbaijan 22
Bahamas 10
Bahrain 7
Bangladesh 30
Barbados 12
Belarus 3
Belgium 4
Belize 13
Benin 93
Bhutan 30
Bolivia (Plurinational State of) 27
Bosnia and Herzegovina 6
Botswana 36
Brazil 14
British Virgin Islands NA
Brunei Darussalam 12
Bulgaria 7
Burkina Faso 76
Burundi 58
Cabo Verde 19
Cambodia 28
Cameroon 76
Canada 5
Central African Republic 116
Chad 119
Chile 7
China 9
Colombia 14
Comoros 67
Congo 50
Cook Islands 8
Costa Rica 9
Côte d’Ivoire 81
Croatia 5
Cuba 5
Cyprus 2
Czechia 3
Democratic People’s Republic of Korea 18
Democratic Republic of the Congo 88
Denmark 4
Djibouti 59
Dominica 36
Dominican Republic 29
Ecuador 14
Egypt 21
El Salvador 14
Equatorial Guinea 85
Eritrea 42
Estonia 3
Eswatini 54
Ethiopia 55
Fiji 26
Finland 2
France 4
Gabon 45
Gambia 58
Georgia 10
Germany 4
Ghana 48
Greece 4
Grenada 15
Guatemala 26
Guinea 101
Guinea-Bissau 81
Guyana 30
Haiti 65
Holy See NA
Honduras 18
Hungary 4
Iceland 2
India 37
Indonesia 25
Iran (Islamic Republic of) 14
Iraq 27
Ireland 4
Israel 4
Italy 3
Jamaica 14
Japan 2
Jordan 16
Kazakhstan 10
Kenya 41
Kiribati 53
Kuwait 8
Kyrgyzstan 19
Lao People’s Democratic Republic 47
Latvia 4
Lebanon 7
Lesotho 81
Liberia 71
Libya 12
Liechtenstein NA
Lithuania 4
Luxembourg 2
Madagascar 54
Malawi 50
Malaysia 8
Maldives 9
Mali 98
Malta 7
Marshall Islands 33
Mauritania 76
Mauritius 16
Mexico 13
Micronesia (Federated States of) 31
Monaco 3
Mongolia 16
Montenegro 3
Montserrat NA
Morocco 22
Mozambique 73
Myanmar 46
Namibia 40
Nauru 32
Nepal 32
Netherlands 4
New Zealand 6
Nicaragua 18
Niger 84
Nigeria 120
Niue 24
North Macedonia 10
Norway 3
Oman 11
Pakistan 69
Palau 18
Panama 15
Papua New Guinea 48
Paraguay 20
Peru 14
Philippines 28
Poland 4
Portugal 4
Qatar 7
Republic of Korea 3
Republic of Moldova 16
Romania 7
Russian Federation 7
Rwanda 35
Saint Kitts and Nevis 12
Saint Lucia 17
Saint Vincent and the Grenadines 16
Samoa 16
San Marino 2
Sao Tome and Principe 31
Saudi Arabia 7
Senegal 44
Serbia 6
Seychelles 14
Sierra Leone 105
Singapore 3
Slovakia 6
Slovenia 2
Solomon Islands 20
Somalia 122
South Africa 34
South Sudan 99
Spain 3
Sri Lanka 7
State of Palestine 20
Sudan 60
Suriname 19
Sweden 3
Switzerland 4
Syrian Arab Republic 17
Tajikistan 35
Thailand 9
Timor-Leste 46
Togo 70
Tokelau NA
Tonga 16
Trinidad and Tobago 18
Tunisia 17
Turkey 11
Turkmenistan 46
Turks and Caicos Islands NA
Tuvalu 24
Uganda 46
Ukraine 9
United Arab Emirates 8
United Kingdom 4
United Republic of Tanzania 53
United States 7
Uruguay 8
Uzbekistan 21
Vanuatu 26
Venezuela (Bolivarian Republic of) 25
Viet Nam 21
Yemen 55
Zambia 58
Zimbabwe 46
SUMMARY NA
East Asia and Pacific 15
Europe and Central Asia 9
Eastern Europe and Central Asia 13
Western Europe 4
Latin America and Caribbean 16
Middle East and North Africa 22
North America 6
South Asia 42
Sub-Saharan Africa 78
Eastern and Southern Africa 57
West and Central Africa 97
Least developed countries 64
World 39
For a complete list of countries and areas in the regions, subregions and country categories, see page 182 or visit <data.unicef.org/regionalclassifications>. NA
It is not advisable to compare data from consecutive editions of The State of the World’s Children. NA
NOTES NA
? Data not available. NA
DEFINITIONS OF THE INDICATORS NA
Under-5 mortality rate – Probability of dying between birth and exactly 5 years of age, expressed per 1,000 live births. NA
Infant mortality rate – Probability of dying between birth and exactly 1 year of age, expressed per 1,000 live births. NA
Neonatal mortality rate – Probability of dying during the first 28 days of life, expressed per 1,000 live births. NA
Probability of dying among children aged 5–14 – Probability of dying at age 5–14 years expressed per 1,000 children aged 5. NA
MAIN DATA SOURCES NA
Under-5, infant, neonatal and age 5–14 mortality rates – United Nations Inter-agency Group for Child Mortality Estimation (UNICEF, World Health Organization, United Nations Population Division and the World Bank Group). Last update: September 2019. NA
Under-5 deaths, neonatal deaths and deaths aged 5–14 – United Nations Inter-agency Group for Child Mortality Estimation (UNICEF, World Health Organization, United Nations Population Division and the World Bank Group). Last update: September 2019. NA

Two dataframes regarding children’s mortality rate and GDP information are joined.

fullJoinGDPANDMortalityRate <- full_join(RefEconomicIndicatorGDP1,RefChild_Mortality_Rate,by="NameofCountries1")
View(fullJoinGDPANDMortalityRate)

na values are omitted. Required values from UNICEF member countries are sected. Summary values are excluded.

#fullJoinGDP<-na.omit(fullJoinGDP)
fullJoinGDPANDMortalityRate<-na.omit(fullJoinGDPANDMortalityRate)
AnalyzingGDPandMortalityRate<-fullJoinGDPANDMortalityRate[1:189,]
view(AnalyzingGDPandMortalityRate)%>%
knitr::kable(caption = "Table 7: Analyzing GDP of countriesChildren's Mortality rate around the world in 2018 ")%>%
  kableExtra::kable_styling(bootstrap_options = "striped")
Table 7: Analyzing GDP of countriesChildren’s Mortality rate around the world in 2018
NameofCountries1 GDP mortality_rate
1 Afghanistan 556.3 62
2 Albania 4532.9 9
3 Algeria 4048.3 23
4 Andorra 39134.4 3
5 Angola 4095.8 77
6 Antigua and Barbuda 15824.7 6
7 Argentina 14591.9 10
8 Armenia 3914.5 12
9 Australia 54093.6 4
10 Austria 47380.8 4
11 Azerbaijan 4147.1 22
12 Bahamas 31857.9 10
13 Bahrain 23715.5 7
14 Bangladesh 1564.0 30
15 Barbados 16327.6 12
16 Belarus 5761.7 3
17 Belgium 43507.2 4
18 Belize 4956.8 13
19 Benin 827.4 93
20 Bhutan 3390.7 30
21 Bolivia (Plurinational State of) 3351.1 27
22 Bosnia and Herzegovina 5394.6 6
23 Botswana 7893.7 36
24 Brazil 9880.9 14
25 Brunei Darussalam 28572.1 12
26 Bulgaria 8228.0 7
27 Burkina Faso 642.0 76
28 Burundi 293.0 58
29 Cabo Verde 3295.3 19
30 Cambodia 1385.3 28
31 Cameroon 1421.6 76
32 Canada 45069.9 5
33 Central African Republic 471.6 116
34 Chad 664.3 119
35 Chile 15037.4 7
36 China 8759.0 9
37 Colombia 6375.9 14
38 Comoros 1312.4 67
39 Congo 1702.6 50
40 Costa Rica 11752.5 9
41 Côte d’Ivoire 1557.2 81
42 Croatia 13383.7 5
43 Cuba 8541.2 5
44 Cyprus 25760.8 2
45 Czechia 20379.9 3
46 Democratic Republic of the Congo 467.1 88
47 Denmark 57218.9 4
48 Djibouti 1953.9 59
49 Dominica 6951.3 36
50 Dominican Republic 7222.6 29
51 Ecuador 6213.5 14
52 Egypt 2440.5 21
53 El Salvador 3902.2 14
54 Equatorial Guinea 9738.4 85
55 Eritrea 811.4 42
56 Estonia 20200.4 3
57 Eswatini 3941.9 54
58 Ethiopia 768.0 55
59 Fiji 6006.4 26
60 Finland 45804.7 2
61 France 38679.1 4
62 Gabon 7212.5 45
63 Gambia 672.8 58
64 Georgia 4045.4 10
65 Germany 44681.1 4
66 Ghana 2025.9 48
67 Greece 18883.5 4
68 Grenada 10163.6 15
69 Guatemala 4470.6 26
70 Guinea 821.7 101
71 Guinea-Bissau 736.7 81
72 Guyana 4586.1 30
73 Haiti 765.6 65
74 Honduras 2432.9 18
75 Hungary 14278.9 4
76 Iceland 71314.8 2
77 India 1981.5 37
78 Indonesia 3836.9 25
79 Iran (Islamic Republic of) 5627.7 14
80 Iraq 5143.7 27
81 Ireland 68941.8 4
82 Israel 40543.6 4
83 Italy 32155.2 3
84 Jamaica 5060.5 14
85 Japan 38332.0 2
86 Jordan 4168.6 16
87 Kazakhstan 9030.3 10
88 Kenya 1568.2 41
89 Kiribati 1625.6 53
90 Kuwait 29474.5 8
91 Kyrgyzstan 1242.8 19
92 Lao People’s Democratic Republic 2423.8 47
93 Latvia 15684.6 4
94 Lebanon 7838.3 7
95 Lesotho 1232.8 81
96 Liberia 698.7 71
97 Libya 5792.1 12
99 Lithuania 16809.6 4
100 Luxembourg 104498.7 2
101 Madagascar 448.4 54
102 Malawi 356.7 50
103 Malaysia 10117.6 8
104 Maldives 9801.6 9
105 Mali 828.6 98
106 Malta 27241.1 7
107 Marshall Islands 3516.7 33
108 Mauritania 1161.8 76
109 Mauritius 10484.9 16
110 Mexico 9281.1 13
111 Micronesia (Federated States of) 3018.4 31
112 Monaco 166726.1 3
113 Mongolia 3671.9 16
114 Montenegro 7784.1 3
115 Morocco 3036.2 22
116 Mozambique 441.6 73
117 Myanmar 1249.8 46
118 Namibia 5646.5 40
119 Nauru 8844.4 32
120 Nepal 900.6 32
121 Netherlands 48482.8 4
122 New Zealand 42260.1 6
123 Nicaragua 2168.2 18
124 Niger 375.9 84
125 Nigeria 1968.6 120
126 North Macedonia 5417.6 10
127 Norway 75704.2 3
128 Oman 15170.4 11
129 Pakistan 1466.8 69
130 Palau 16274.9 18
131 Panama 15166.1 15
132 Papua New Guinea 2640.2 48
133 Paraguay 5680.6 20
134 Peru 6700.8 14
135 Philippines 2981.9 28
136 Poland 13861.1 4
137 Portugal 21291.4 4
138 Qatar 61264.4 7
139 Republic of Korea 29742.8 3
140 Republic of Moldova 2724.5 16
141 Romania 10793.0 7
142 Russian Federation 10750.6 7
143 Rwanda 762.5 35
144 Saint Vincent and the Grenadines 7149.6 16
145 Samoa 4307.8 16
146 San Marino 48494.6 2
147 Sao Tome and Principe 1811.0 31
148 Saudi Arabia 20803.7 7
149 Senegal 1367.2 44
150 Serbia 6284.2 6
151 Seychelles 15683.7 14
152 Sierra Leone 499.4 105
153 Singapore 60297.8 3
154 Slovakia 17579.3 6
155 Slovenia 23449.6 2
156 Solomon Islands 2077.1 20
157 Somalia 488.6 122
158 South Africa 6120.5 34
159 South Sudan 283.5 99
160 Spain 28208.3 3
161 Sri Lanka 4104.6 7
162 State of Palestine 3254.5 20
163 Sudan 3015.0 60
164 Suriname 5379.1 19
165 Sweden 53253.5 3
166 Switzerland 80333.4 4
167 Tajikistan 806.0 35
168 Thailand 6578.2 9
169 Timor-Leste 2000.6 46
170 Togo 619.1 70
171 Tonga 4217.5 16
172 Trinidad and Tobago 16076.1 18
173 Tunisia 3494.3 17
174 Turkey 10499.7 11
175 Turkmenistan 6587.1 46
177 Tuvalu 3572.6 24
178 Uganda 631.5 46
179 Ukraine 2640.7 9
180 United Arab Emirates 40325.4 8
181 United Kingdom 39932.1 4
182 United Republic of Tanzania 1004.8 53
183 United States 59927.9 7
184 Uruguay 16437.2 8
185 Uzbekistan 1826.6 21
186 Vanuatu 2976.1 26
187 Venezuela (Bolivarian Republic of) 16054.5 25
188 Viet Nam 2365.6 21
189 Yemen 963.5 55
190 Zambia 1534.9 58
191 Zimbabwe 1602.4 46

The bivariate relationship between GDP and children’s mortality rate is measured. However the relationship is not strong.However,It is really unfortunate to see the high amount of children mortality rate in many countries. I really hope one day it will be eradicated.

correlate7<-data.frame(AnalyzingGDPandMortalityRate$GDP,AnalyzingGDPandMortalityRate$mortality_rate)
correlate8<-rcorr(as.matrix(correlate7))
correlate8
##                                             AnalyzingGDPandMortalityRate.GDP
## AnalyzingGDPandMortalityRate.GDP                                        1.00
## AnalyzingGDPandMortalityRate.mortality_rate                            -0.46
##                                             AnalyzingGDPandMortalityRate.mortality_rate
## AnalyzingGDPandMortalityRate.GDP                                                  -0.46
## AnalyzingGDPandMortalityRate.mortality_rate                                        1.00
## 
## n= 189 
## 
## 
## P
##                                             AnalyzingGDPandMortalityRate.GDP
## AnalyzingGDPandMortalityRate.GDP                                            
## AnalyzingGDPandMortalityRate.mortality_rate  0                              
##                                             AnalyzingGDPandMortalityRate.mortality_rate
## AnalyzingGDPandMortalityRate.GDP             0                                         
## AnalyzingGDPandMortalityRate.mortality_rate
library(ggplot2)
ggplot(data =AnalyzingGDPandMortalityRate,aes(y=AnalyzingGDPandMortalityRate$mortality_rate,x=AnalyzingGDPandMortalityRate$GDP) )+
  geom_point()

Conclusion:

The statistical analysis between GDP and women’s participation in economy refers that countries that have higher rate of women’s involvement tend to do well than the countries that don’t have equal opportunities for women.Additonally relationship between GDP and Children mortality rate in various countries in the world is also quantified to understand the effect of GDP. However, a strong correlation has not been established between GDP and Children’s mortality rate.

Source: The State of the World’s Children 2019 Statistical Tables. (2019). UNICEF Data: Monitoring the Situation of Children and Women. https://data.unicef.org/resources/dataset/sowc-2019-statistical-tables/