1. Raw Data 준비

Raw Data 다운 받은 뒤

08, 13, 18년 3개년 데이터만 따로 빼기: Spss -> data -> 케이스 선택: 08, 13, 18년

2. sav 파일을 csv 파일로 변환한 뒤 R로 불러오기

library(haven)
#sav 파일 읽어오기
kgssdata <- read_sav("C:/RRR/kgss/kgss_raw_data/kgss_08_13_18_rawdata.sav") 
#읽어온 file1.sav를 file1.csv로 새롭게 저장
write.table(kgssdata, file = "C:/RRR/kgss/kgss_raw_data/kgss_08_13_18_rawdata.csv" 
            , sep = "," #새 데이터의 열 구분은 ","(csv파일이니깐)
            , row.names = FALSE)
# R로 csv파일 불러오기
kgssdata <- read.csv("C:/RRR/kgss/kgss_raw_data/kgss_08_13_18_rawdata.csv"
                      , header = T #첫 행 변수명으로  
                      , sep = "," #csv에서 자료 구분은 ","
                      , stringsAsFactors = F #문자열을 factor로 읽지 않기
                      , na.strings = "") 

3. 쓸 변수만 추려내기

KG1 <- subset(kgssdata
                     , select = c(SEXATT1, SEXATT2, SEXATT3
                                  , SEX, AGE, EDUC, GRADUATE
                                  , EMPLY, URBRURAL, PARTYLR
                                  , PRTYID08, PRTYID13, PRTYID18
                                  , MARITAL, INCOME, NORTHWHO
                                  , KRPROUD, UNIFI
                                  , ABORT1, ABORT2, HBBYWK08
                                  , TRTASSB, TRTFIRM, TRTRELI
                                  , TRTJURI, TRTEDUC, RELIG
                                  , RELLEAD1, RELSCI2, RELFUN1
                                  , RELFUN2, RELPOWR, RELDIFF1
                                  , RELDIFF2, RELEXTM1, GODCONC
                                  , GODBELI, RELNW1, RELNW2
                                  , RELNW3, RELNW4, RELNW5
                                  , RELNW6, RELNW7, SPIRIT1
                                  , SPIRIT2, SPIRIT3, SPIRIT4
                                  , SPIRIT5, SPIRIT6, RELMA
                                  , RELDENMA, RELFA,  RELDENFA
                                  , RELUP, RELDENUP, RELATNMA
                                  , RELATNFA, RELATNUP, PRAYFREQ
                                  , RELACT, RELOBJT, RELVIST
                                  , RELIGOUS, SPIRITUA, RELGSTY2
                                  , RELGSTY3, REGGRP1, REGGRP2
                                  , REGGRP3, REGGRP5, REGGRP6
                                  , REGGRP7, REGGRP8, REGGRP9
                                  , SEXROLE1, PATRACH1,SD1JP,
                                  SD2JP, SD3JP, SD1TW, SD2TW,
                                  SD3TW,SD1CN,SD2CN,SD3CN,
                                  SD1SEA, SD2SEA, SD3SEA, SD1NAM,
                                  SD2NAM, SD3NAM, SD1EUR, SD2EUR,
                                  SD3EUR, FORNWKER,FORNBRID,
                                  CONTACT3,ENGPROF1, ENGPROF2,
                                  ENGPROF3,IMPLIMI0, SELFINT0,
                                  FORCUL0))

4. 변수 재구성하기 전에

일단 모든 애들을 다 numeric으로 바꾼다

library(purrr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
KG1 <- KG1 %>% map_if(is.factor, as.numeric)
KG1 <- KG1 %>% map_if(is.character, as.numeric)
## Warning in .f(.x[[i]], ...): 강제형변환에 의해 생성된 NA 입니다
KG1 <- KG1 %>% map_if(is.integer, as.numeric)

변수 재구성 전에는 항상 새로운 object로 만든 뒤 시작하기!

KG2 <- data.frame(KG1)

5. 변수 재구성 시작!

library("descr")

변수 재구성 전에는 빈도분석을 통해서 항상 결측치 혹은 이상값이 있는지 확인하고 시작할 것!

혼전성교 반대(역코딩)

descr::freq(KG2$SEXATT1) #빈도 확인

## KG2$SEXATT1 
##       Frequency  Percent
## -8           25   0.6522
## 1           863  22.5150
## 2           695  18.1320
## 3          1321  34.4639
## 4           929  24.2369
## Total      3833 100.0000
KG2$SEXATT1_n <- ifelse(KG2$SEXATT1 == 1, 4,
                            ifelse(KG2$SEXATT1 == 2, 3,
                                   ifelse(KG2$SEXATT1 == 3, 2,
                                          ifelse(KG2$SEXATT1 == 4, 1, NA))))
descr::freq(KG2$SEXATT1_n)

## KG2$SEXATT1_n 
##       Frequency  Percent Valid Percent
## 1           929  24.2369         24.40
## 2          1321  34.4639         34.69
## 3           695  18.1320         18.25
## 4           863  22.5150         22.66
## NA's         25   0.6522              
## Total      3833 100.0000        100.00

혼외성교 반대(역코딩)

descr::freq(KG2$SEXATT2)

## KG2$SEXATT2 
##       Frequency  Percent
## -8           16   0.4174
## 1          2800  73.0498
## 2           636  16.5927
## 3           277   7.2267
## 4           104   2.7133
## Total      3833 100.0000
KG2$SEXATT2_n <- ifelse(KG2$SEXATT2 == 1, 4,
                            ifelse(KG2$SEXATT2 == 2, 3,
                                   ifelse(KG2$SEXATT2 == 3, 2,
                                          ifelse(KG2$SEXATT2 == 4, 1, NA))))
descr::freq(KG2$SEXATT2_n) 

## KG2$SEXATT2_n 
##       Frequency  Percent Valid Percent
## 1           104   2.7133         2.725
## 2           277   7.2267         7.257
## 3           636  16.5927        16.662
## 4          2800  73.0498        73.356
## NA's         16   0.4174              
## Total      3833 100.0000       100.000

동성애 반대(역코딩)

descr::freq(KG2$SEXATT3)

## KG2$SEXATT3 
##       Frequency Percent
## -8           61   1.591
## 1          2354  61.414
## 2           519  13.540
## 3           450  11.740
## 4           449  11.714
## Total      3833 100.000
KG2$SEXATT3_n <- ifelse(KG2$SEXATT3 == 1, 4,
                            ifelse(KG2$SEXATT3 == 2, 3,
                                   ifelse(KG2$SEXATT3 == 3, 2,
                                          ifelse(KG2$SEXATT3 == 4, 1, NA))))
descr::freq(KG2$SEXATT3_n)

## KG2$SEXATT3_n 
##       Frequency Percent Valid Percent
## 1           449  11.714         11.90
## 2           450  11.740         11.93
## 3           519  13.540         13.76
## 4          2354  61.414         62.41
## NA's         61   1.591              
## Total      3833 100.000        100.00

성별

freq(KG2$SEX)

## KG2$SEX 
##       Frequency Percent
## 1          1812   47.27
## 2          2021   52.73
## Total      3833  100.00
KG2$SEX_n <- factor(kgssdata$SEX, levels = c(1, 2), labels = c("Male", "Female"))
freq(KG2$SEX_n)

## KG2$SEX_n 
##        Frequency Percent
## Male        1812   47.27
## Female      2021   52.73
## Total       3833  100.00

연령

freq(KG2$AGE)

## KG2$AGE 
##       Frequency   Percent
## -8            3   0.07827
## 18           45   1.17402
## 19           64   1.66971
## 20           73   1.90451
## 21           60   1.56535
## 22           81   2.11323
## 23           73   1.90451
## 24           72   1.87842
## 25           65   1.69580
## 26           66   1.72189
## 27           44   1.14793
## 28           54   1.40882
## 29           59   1.53926
## 30           56   1.46100
## 31           67   1.74798
## 32           64   1.66971
## 33           72   1.87842
## 34           78   2.03496
## 35           79   2.06105
## 36           69   1.80016
## 37           88   2.29585
## 38           92   2.40021
## 39           83   2.16541
## 40           75   1.95669
## 41           71   1.85233
## 42           86   2.24367
## 43           98   2.55674
## 44           86   2.24367
## 45           87   2.26976
## 46           94   2.45239
## 47           75   1.95669
## 48           75   1.95669
## 49           69   1.80016
## 50           91   2.37412
## 51           57   1.48709
## 52           82   2.13932
## 53           68   1.77407
## 54           60   1.56535
## 55           40   1.04357
## 56           61   1.59144
## 57           36   0.93921
## 58           54   1.40882
## 59           51   1.33055
## 60           53   1.38273
## 61           37   0.96530
## 62           42   1.09575
## 63           40   1.04357
## 64           43   1.12184
## 65           54   1.40882
## 66           44   1.14793
## 67           40   1.04357
## 68           38   0.99139
## 69           29   0.75659
## 70           45   1.17402
## 71           52   1.35664
## 72           30   0.78268
## 73           36   0.93921
## 74           28   0.73050
## 75           35   0.91312
## 76           29   0.75659
## 77           35   0.91312
## 78           28   0.73050
## 79           35   0.91312
## 80           27   0.70441
## 81           18   0.46961
## 82           17   0.44352
## 83           15   0.39134
## 84           19   0.49570
## 85           11   0.28698
## 86            8   0.20871
## 87            7   0.18262
## 88            7   0.18262
## 89            1   0.02609
## 90            3   0.07827
## 91            3   0.07827
## 97            1   0.02609
## Total      3833 100.00000
KG2$AGE_n <- ifelse(KG2$AGE < 0, NA, KG2$AGE)
freq(KG2$AGE_n)

## KG2$AGE_n 
##       Frequency   Percent Valid Percent
## 18           45   1.17402       1.17493
## 19           64   1.66971       1.67102
## 20           73   1.90451       1.90601
## 21           60   1.56535       1.56658
## 22           81   2.11323       2.11488
## 23           73   1.90451       1.90601
## 24           72   1.87842       1.87990
## 25           65   1.69580       1.69713
## 26           66   1.72189       1.72324
## 27           44   1.14793       1.14883
## 28           54   1.40882       1.40992
## 29           59   1.53926       1.54047
## 30           56   1.46100       1.46214
## 31           67   1.74798       1.74935
## 32           64   1.66971       1.67102
## 33           72   1.87842       1.87990
## 34           78   2.03496       2.03655
## 35           79   2.06105       2.06266
## 36           69   1.80016       1.80157
## 37           88   2.29585       2.29765
## 38           92   2.40021       2.40209
## 39           83   2.16541       2.16710
## 40           75   1.95669       1.95822
## 41           71   1.85233       1.85379
## 42           86   2.24367       2.24543
## 43           98   2.55674       2.55875
## 44           86   2.24367       2.24543
## 45           87   2.26976       2.27154
## 46           94   2.45239       2.45431
## 47           75   1.95669       1.95822
## 48           75   1.95669       1.95822
## 49           69   1.80016       1.80157
## 50           91   2.37412       2.37598
## 51           57   1.48709       1.48825
## 52           82   2.13932       2.14099
## 53           68   1.77407       1.77546
## 54           60   1.56535       1.56658
## 55           40   1.04357       1.04439
## 56           61   1.59144       1.59269
## 57           36   0.93921       0.93995
## 58           54   1.40882       1.40992
## 59           51   1.33055       1.33159
## 60           53   1.38273       1.38381
## 61           37   0.96530       0.96606
## 62           42   1.09575       1.09661
## 63           40   1.04357       1.04439
## 64           43   1.12184       1.12272
## 65           54   1.40882       1.40992
## 66           44   1.14793       1.14883
## 67           40   1.04357       1.04439
## 68           38   0.99139       0.99217
## 69           29   0.75659       0.75718
## 70           45   1.17402       1.17493
## 71           52   1.35664       1.35770
## 72           30   0.78268       0.78329
## 73           36   0.93921       0.93995
## 74           28   0.73050       0.73107
## 75           35   0.91312       0.91384
## 76           29   0.75659       0.75718
## 77           35   0.91312       0.91384
## 78           28   0.73050       0.73107
## 79           35   0.91312       0.91384
## 80           27   0.70441       0.70496
## 81           18   0.46961       0.46997
## 82           17   0.44352       0.44386
## 83           15   0.39134       0.39164
## 84           19   0.49570       0.49608
## 85           11   0.28698       0.28721
## 86            8   0.20871       0.20888
## 87            7   0.18262       0.18277
## 88            7   0.18262       0.18277
## 89            1   0.02609       0.02611
## 90            3   0.07827       0.07833
## 91            3   0.07827       0.07833
## 97            1   0.02609       0.02611
## NA's          3   0.07827              
## Total      3833 100.00000     100.00000

연령 범주형

KG2$AGE_n_c <- ifelse(KG2$AGE_n <= 29, 1,
                            ifelse(KG2$AGE_n <= 39, 2,
                                   ifelse(KG2$AGE_n <= 49, 3,
                                          ifelse(KG2$AGE_n <= 59, 4,
                                                 ifelse(KG2$AGE_n <= 69, 5,
                                                        ifelse(KG2$AGE_n >=70, 6, NA))))))
KG2$AGE_n_c <- factor(KG2$AGE_n_c
                            , levels = c(1:6)
                            , labels = c("20s 이하", "30s", "40s", "50s", "60s", "70s 이상"))
freq(KG2$AGE_n_c)

## KG2$AGE_n_c 
##          Frequency   Percent Valid Percent
## 20s 이하       756  19.72345         19.74
## 30s            748  19.51474         19.53
## 40s            816  21.28881         21.31
## 50s            600  15.65354         15.67
## 60s            420  10.95747         10.97
## 70s 이상       490  12.78372         12.79
## NA's             3   0.07827              
## Total         3833 100.00000        100.00

교육수준

freq(KG2$EDUC)

## KG2$EDUC 
##       Frequency   Percent
## -8            1   0.02609
## 0           130   3.39160
## 1           384  10.01826
## 2           280   7.30498
## 3          1095  28.56770
## 4           460  12.00104
## 5          1260  32.87242
## 6           168   4.38299
## 7            50   1.30446
## 8             5   0.13045
## Total      3833 100.00000
KG2$EDUC_n <- ifelse(KG2$EDUC == c(-8), NA,
                           ifelse(KG2$EDUC == 8, NA, KG2$EDUC))
freq(KG2$EDUC_n)

## KG2$EDUC_n 
##       Frequency  Percent Valid Percent
## 0           130   3.3916         3.397
## 1           384  10.0183        10.034
## 2           280   7.3050         7.316
## 3          1095  28.5677        28.612
## 4           460  12.0010        12.020
## 5          1260  32.8724        32.924
## 6           168   4.3830         4.390
## 7            50   1.3045         1.307
## NA's          6   0.1565              
## Total      3833 100.0000       100.000

현재 취업

freq(KG2$EMPLY)

## KG2$EMPLY 
##       Frequency Percent
## 1          2153   56.17
## 2          1680   43.83
## Total      3833  100.00
KG2$EMPLY_n <- factor(kgssdata$SEX, levels = c(1, 2), labels = c("취업", "미취업"))
freq(KG2$EMPLY_n)

## KG2$EMPLY_n 
##        Frequency Percent
## 취업        1812   47.27
## 미취업      2021   52.73
## Total       3833  100.00

거주 도시 규모

freq(KG2$URBRURAL)

## KG2$URBRURAL 
##       Frequency  Percent
## -8            5   0.1304
## 1          1094  28.5416
## 2           991  25.8544
## 3          1202  31.3592
## 4           501  13.0707
## 5            40   1.0436
## Total      3833 100.0000
KG2$URBRURAL_n <- ifelse(KG2$URBRURAL < 0, NA, KG2$URBRURAL)
KG2$URBRURAL_n <- factor(KG2$URBRURAL_n
                               , levels = c(1:5)
                               , labels = c("큰 도시", "큰 도시 주변", "작은 도시", "시골마을", "외딴 곳"))
freq(KG2$URBRURAL_n)

## KG2$URBRURAL_n 
##              Frequency  Percent Valid Percent
## 큰 도시           1094  28.5416        28.579
## 큰 도시 주변       991  25.8544        25.888
## 작은 도시         1202  31.3592        31.400
## 시골마을           501  13.0707        13.088
## 외딴 곳             40   1.0436         1.045
## NA's                 5   0.1304              
## Total             3833 100.0000       100.000

정치 성향

freq(KG2$PARTYLR)

## KG2$PARTYLR 
##       Frequency Percent
## -8           86   2.244
## 1           204   5.322
## 2          1081  28.202
## 3          1257  32.794
## 4          1015  26.481
## 5           190   4.957
## Total      3833 100.000
KG2$PARTYLR_n <- ifelse(KG2$PARTYLR < 0, NA, KG2$PARTYLR)
freq(KG2$PARTYLR_n)

## KG2$PARTYLR_n 
##       Frequency Percent Valid Percent
## 1           204   5.322         5.444
## 2          1081  28.202        28.850
## 3          1257  32.794        33.547
## 4          1015  26.481        27.088
## 5           190   4.957         5.071
## NA's         86   2.244              
## Total      3833 100.000       100.000

자한당 지지 = 1

KG2$party_n1 <- ifelse(KG2$PRTYID08 == 1, 1
                             , ifelse(KG2$PRTYID08 ==2, 1
                                      , ifelse(KG2$PRTYID08 ==3, 1
                             , ifelse(KG2$PRTYID13 == 1, 1
                                      , ifelse(KG2$PRTYID18 == 2, 1
                                               , ifelse(KG2$PRTYID18==3, 1
                                               , 0))))))
freq(KG2$party_n1)

## KG2$party_n1 
##       Frequency Percent
## 0          2441   63.68
## 1          1392   36.32
## Total      3833  100.00

민주당 지지 = 1

KG2$party_n2 <- ifelse(KG2$PRTYID08 == 4, 1
                             , ifelse(KG2$PRTYID13 == 2, 1
                                      , ifelse(KG2$PRTYID18 == 1, 1
                                               , 0)))
freq(KG2$party_n2)

## KG2$party_n2 
##       Frequency Percent
## 0          2734   71.33
## 1          1099   28.67
## Total      3833  100.00

미혼1 기혼2 그외3

freq(KG2$MARITAL)

## KG2$MARITAL 
##       Frequency  Percent
## -8            7   0.1826
## 1          2337  60.9705
## 2           364   9.4965
## 3           149   3.8873
## 4            33   0.8609
## 5           925  24.1325
## 6            18   0.4696
## Total      3833 100.0000
KG2$MARITAL_n <- ifelse(KG2$MARITAL == 5, 1
                              , ifelse(KG2$MARITAL == 1, 2, 3))
KG2$MARITAL_n <- factor(KG2$MARITAL_n
                            , levels = c(1, 2, 3)
                            , labels = c("미혼", "기혼", "사별, 이혼, 별거, 동거"))
freq(KG2$MARITAL_n)

## KG2$MARITAL_n 
##                        Frequency Percent
## 미혼                         925   24.13
## 기혼                        2337   60.97
## 사별, 이혼, 별거, 동거       571   14.90
## Total                       3833  100.00

임금

freq(KG2$INCOME)

## KG2$INCOME 
##       Frequency  Percent
## -8          224   5.8440
## 0            32   0.8349
## 1           225   5.8701
## 2           223   5.8179
## 3           222   5.7918
## 4           213   5.5570
## 5           307   8.0094
## 6           231   6.0266
## 7           373   9.7313
## 8           217   5.6614
## 9           294   7.6702
## 10          160   4.1743
## 11          298   7.7746
## 12           98   2.5567
## 13          134   3.4960
## 14           60   1.5654
## 15           93   2.4263
## 16           41   1.0697
## 17           90   2.3480
## 18           30   0.7827
## 19           37   0.9653
## 20           12   0.3131
## 21          219   5.7135
## Total      3833 100.0000

북한 인식

freq(KG2$NORTHWHO)

## KG2$NORTHWHO 
##       Frequency Percent
## -8           74   1.931
## 1           609  15.888
## 2          1263  32.951
## 3          1381  36.029
## 4           506  13.201
## Total      3833 100.000
KG2$NORTHWHO_n <- ifelse(KG2$NORTHWHO == -8, NA, KG2$NORTHWHO)
KG2$NORTHWHO_n <- factor(KG2$NORTHWHO_n
                               , levels = c(1:4)
                               , labels = c("지원대상", "협력대상", "경계대상", "적대대상"))
freq(KG2$NORTHWHO_n)

## KG2$NORTHWHO_n 
##          Frequency Percent Valid Percent
## 지원대상       609  15.888         16.20
## 협력대상      1263  32.951         33.60
## 경계대상      1381  36.029         36.74
## 적대대상       506  13.201         13.46
## NA's            74   1.931              
## Total         3833 100.000        100.00

북한 지원, 협력 = 1, 경계, 적대 = 2

freq(KG2$NORTHWHO_n)

## KG2$NORTHWHO_n 
##          Frequency Percent Valid Percent
## 지원대상       609  15.888         16.20
## 협력대상      1263  32.951         33.60
## 경계대상      1381  36.029         36.74
## 적대대상       506  13.201         13.46
## NA's            74   1.931              
## Total         3833 100.000        100.00
KG2$NORTHWHO_n <- as.numeric(KG2$NORTHWHO_n)
KG2$NORTHWHO_n2 <- ifelse(KG2$NORTHWHO_n <= 2, 1
                                , 2)
KG2$NORTHWHO_n2 <- factor(KG2$NORTHWHO_n2
                               , levels = c(1:2)
                               , labels = c("지원,협력", "경계,적대"))
freq(KG2$NORTHWHO_n2)

## KG2$NORTHWHO_n2 
##           Frequency Percent Valid Percent
## 지원,협력      1872  48.839          49.8
## 경계,적대      1887  49.230          50.2
## NA's             74   1.931              
## Total          3833 100.000         100.0

한국인 자긍심_높을수록 자긍

freq(KG2$KRPROUD)

## KG2$KRPROUD 
##       Frequency Percent
## -8           48   1.252
## 1          1226  31.985
## 2          1955  51.004
## 3           562  14.662
## 4            42   1.096
## Total      3833 100.000
KG2$KRPROUD_n <- ifelse(KG2$KRPROUD == 4, 1
                              , ifelse(KG2$KRPROUD == 3, 2
                              , ifelse(KG2$KRPROUD == 2, 3
                                       , ifelse(KG2$KRPROUD == 1, 4, NA))))
freq(KG2$KRPROUD_n)

## KG2$KRPROUD_n 
##       Frequency Percent Valid Percent
## 1            42   1.096          1.11
## 2           562  14.662         14.85
## 3          1955  51.004         51.65
## 4          1226  31.985         32.39
## NA's         48   1.252              
## Total      3833 100.000        100.00

인공유산 _ 높을수록 반대

freq(KG2$ABORT2)

## KG2$ABORT2 
##       Frequency  Percent
## -8           33   0.8609
## -1         1294  33.7595
## 1           667  17.4015
## 2           460  12.0010
## 3           777  20.2713
## 4           602  15.7057
## Total      3833 100.0000
KG2$ABORT2_n <- ifelse(KG2$ABORT2 == 4, 1
                              , ifelse(KG2$ABORT2 == 3, 2
                                       , ifelse(KG2$ABORT2 == 2, 3
                                                , ifelse(KG2$ABORT2 == 1, 4, NA))))
freq(KG2$ABORT2_n)

## KG2$ABORT2_n 
##       Frequency Percent Valid Percent
## 1           602   15.71         24.02
## 2           777   20.27         31.01
## 3           460   12.00         18.36
## 4           667   17.40         26.62
## NA's       1327   34.62              
## Total      3833  100.00        100.00

종교

freq(KG2$RELIG)

## KG2$RELIG 
##       Frequency   Percent
## -8            5   0.13045
## 1           873  22.77589
## 2           869  22.67154
## 3           362   9.44430
## 4          1672  43.62118
## 5             4   0.10436
## 6            12   0.31307
## 7             4   0.10436
## 8             1   0.02609
## 9             5   0.13045
## 11            2   0.05218
## 77           24   0.62614
## Total      3833 100.00000
KG2$RELIG_n <- ifelse(KG2$RELIG == 4, 1
                            , ifelse(KG2$RELIG == 1, 2
                                     , ifelse(KG2$RELIG ==2, 3
                                              , ifelse(KG2$RELIG ==3, 4
                                                       , NA))))
KG2$RELIG_n <- factor(KG2$RELIG_n
                                , levels = c(1:4)
                                , labels = c("무교", "불교", "개신교", "천주교"))
freq(KG2$RELIG_n)

## KG2$RELIG_n 
##        Frequency Percent Valid Percent
## 무교        1672  43.621        44.280
## 불교         873  22.776        23.120
## 개신교       869  22.672        23.014
## 천주교       362   9.444         9.587
## NA's          57   1.487              
## Total       3833 100.000       100.000

종교지도자: 선거시 투표 영향 _ 높을수록 영향 미쳐도 되

freq(KG2$RELLEAD1)

## KG2$RELLEAD1 
##       Frequency Percent
## -8           22   0.574
## -1         1294  33.759
## 1          1181  30.811
## 2           565  14.740
## 3           376   9.810
## 4           199   5.192
## 5           196   5.113
## Total      3833 100.000
KG2$RELLEAD1_n <- ifelse(KG2$RELLEAD1 < 0, NA, KG2$RELLEAD1)
freq(KG2$RELLEAD1_n)

## KG2$RELLEAD1_n 
##       Frequency Percent Valid Percent
## 1          1181  30.811        46.921
## 2           565  14.740        22.447
## 3           376   9.810        14.938
## 4           199   5.192         7.906
## 5           196   5.113         7.787
## NA's       1316  34.333              
## Total      3833 100.000       100.000

종교와 과학: 사람들은 과학 지나치게 신뢰, 종교는 신뢰안함_높을수록 동의

freq(KG2$RELSCI2)

## KG2$RELSCI2 
##       Frequency  Percent
## -8           31   0.8088
## -1         1294  33.7595
## 1           303   7.9050
## 2           868  22.6454
## 3           745  19.4365
## 4           475  12.3924
## 5           117   3.0524
## Total      3833 100.0000
KG2$RELSCI2_n <- ifelse(KG2$RELSCI2 == 5, 1
                            , ifelse(KG2$RELSCI2 == 4, 2
                                     , ifelse(KG2$RELSCI2 ==3, 3
                                              , ifelse(KG2$RELSCI2 ==2, 4
                                                       , ifelse(KG2$RELSCI2 ==1, 5
                                                       , NA)))))
freq(KG2$RELSCI2_n)

## KG2$RELSCI2_n 
##       Frequency Percent Valid Percent
## 1           117   3.052         4.665
## 2           475  12.392        18.939
## 3           745  19.436        29.705
## 4           868  22.645        34.609
## 5           303   7.905        12.081
## NA's       1325  34.568              
## Total      3833 100.000       100.000

종교는 평화보다 갈등 유발_높을수록 반대

freq(KG2$RELFUN1)

## KG2$RELFUN1 
##       Frequency  Percent
## -8           26   0.6783
## -1         1294  33.7595
## 1           330   8.6094
## 2           791  20.6366
## 3           591  15.4187
## 4           570  14.8709
## 5           231   6.0266
## Total      3833 100.0000
KG2$RELFUN1_n <- ifelse(KG2$RELFUN1<0, NA, KG2$RELFUN1)
freq(KG2$RELFUN1_n)

## KG2$RELFUN1_n 
##       Frequency Percent Valid Percent
## 1           330   8.609        13.132
## 2           791  20.637        31.476
## 3           591  15.419        23.518
## 4           570  14.871        22.682
## 5           231   6.027         9.192
## NA's       1320  34.438              
## Total      3833 100.000       100.000

종교 신념 강한 사람은 배타적 _ 높을수록 반대

freq(KG2$RELFUN2)

## KG2$RELFUN2 
##       Frequency Percent
## -8           34   0.887
## -1         1294  33.759
## 1           517  13.488
## 2           882  23.011
## 3           556  14.506
## 4           376   9.810
## 5           174   4.540
## Total      3833 100.000
KG2$RELFUN2_n <- ifelse(KG2$RELFUN2<0, NA, KG2$RELFUN2)
freq(KG2$RELFUN2_n)

## KG2$RELFUN2_n 
##       Frequency Percent Valid Percent
## 1           517   13.49        20.639
## 2           882   23.01        35.210
## 3           556   14.51        22.196
## 4           376    9.81        15.010
## 5           174    4.54         6.946
## NA's       1328   34.65              
## Total      3833  100.00       100.000

한국사회 종교조직이 권력 많이 갖고 있다 _ 높을수록 반대 즉 권력 적게 갖는다

freq(KG2$RELPOWR)

## KG2$RELPOWR 
##       Frequency Percent
## -8           77   2.009
## -1         1294  33.759
## 1           606  15.810
## 2           947  24.706
## 3           686  17.897
## 4           171   4.461
## 5            52   1.357
## Total      3833 100.000
KG2$RELPOWR_n <- ifelse(KG2$RELPOWR<0, NA, KG2$RELPOWR)
freq(KG2$RELPOWR_n)

## KG2$RELPOWR_n 
##       Frequency Percent Valid Percent
## 1           606  15.810        24.614
## 2           947  24.706        38.465
## 3           686  17.897        27.864
## 4           171   4.461         6.946
## 5            52   1.357         2.112
## NA's       1371  35.768              
## Total      3833 100.000       100.000

다른 종교 가진 사람이 친척 가족과 결혼하는 것 허용? _ 높을수록 허용 안함

freq(KG2$RELDIFF1)

## KG2$RELDIFF1 
##       Frequency  Percent
## -8           27   0.7044
## -1         1294  33.7595
## 1           990  25.8283
## 2          1042  27.1850
## 3           298   7.7746
## 4           182   4.7482
## Total      3833 100.0000
KG2$RELDIFF1_n <- ifelse(KG2$RELDIFF1<0, NA, KG2$RELDIFF1)
freq(KG2$RELDIFF1_n)

## KG2$RELDIFF1_n 
##       Frequency Percent Valid Percent
## 1           990  25.828        39.411
## 2          1042  27.185        41.481
## 3           298   7.775        11.863
## 4           182   4.748         7.245
## NA's       1321  34.464              
## Total      3833 100.000       100.000

극단주의자들의 공개집회 _ 높을수록 허용해야 한다

freq(KG2$RELEXTM1)

## KG2$RELEXTM1 
##       Frequency Percent
## -8           46   1.200
## -1         1294  33.759
## 1           218   5.687
## 2           746  19.463
## 3           827  21.576
## 4           702  18.315
## Total      3833 100.000
KG2$RELEXTM1_n <- ifelse(KG2$RELEXTM1 == 4, 1
                             , ifelse(KG2$RELEXTM1 == 3, 2
                                      , ifelse(KG2$RELEXTM1 == 2, 3
                                               , ifelse(KG2$RELEXTM1 == 1, 4, NA))))
freq(KG2$RELEXTM1_n)

## KG2$RELEXTM1_n 
##       Frequency Percent Valid Percent
## 1           702  18.315        28.159
## 2           827  21.576        33.173
## 3           746  19.463        29.924
## 4           218   5.687         8.744
## NA's       1340  34.960              
## Total      3833 100.000       100.000

어릴때 어머니 종교

KG2$YEAR_n <- kgssdata$YEAR
freq(KG2$RELMA)

## KG2$RELMA 
##       Frequency   Percent
## -8           70   1.82625
## -1         1999  52.15236
## 1           408  10.64440
## 2           179   4.66997
## 3          1105  28.82859
## 6             1   0.02609
## 7             7   0.18262
## 8             9   0.23480
## 9            19   0.49570
## 11           32   0.83486
## 13            1   0.02609
## 14            1   0.02609
## 15            1   0.02609
## 77            1   0.02609
## Total      3833 100.00000
KG2$RELMA_n <- ifelse(KG2$RELMA == -1 & KG2$YEAR_n==2013, 99, KG2$RELMA)
KG2$RELMA_n <- ifelse(KG2$RELMA_n == -1, 1,
                            ifelse(KG2$RELMA_n == 3, 2,
                                   ifelse(KG2$RELMA_n == 1, 3,
                                          ifelse(KG2$RELMA_n == 2, 4, NA))))
KG2$RELMA_n <- factor(KG2$RELMA_n
                            , levels = c(1:4)
                            , labels = c("무교", "불교", "개신교", "천주교"))
freq(KG2$RELMA_n)

## KG2$RELMA_n 
##        Frequency Percent Valid Percent
## 무교         705   18.39        29.412
## 불교        1105   28.83        46.099
## 개신교       408   10.64        17.021
## 천주교       179    4.67         7.468
## NA's        1436   37.46              
## Total       3833  100.00       100.000

어릴때 아버지 종교

freq(KG2$RELFA)

## KG2$RELFA 
##       Frequency   Percent
## -8          117   3.05244
## -1         2692  70.23219
## 1           231   6.02661
## 2            99   2.58283
## 3           642  16.74928
## 6             2   0.05218
## 7             3   0.07827
## 8             2   0.05218
## 9            34   0.88703
## 11           10   0.26089
## 77            1   0.02609
## Total      3833 100.00000
KG2$RELFA_n <- ifelse(KG2$RELFA == -1 & KG2$YEAR_n==2013, 99, KG2$RELFA)
KG2$RELFA_n <- ifelse(KG2$RELFA_n == -1, 1,
                            ifelse(KG2$RELFA_n == 3, 2,
                                   ifelse(KG2$RELFA_n == 1, 3,
                                          ifelse(KG2$RELFA_n == 2, 4, NA))))
KG2$RELFA_n <- factor(KG2$RELFA_n
                            , levels = c(1:4)
                            , labels = c("무교", "불교", "개신교", "천주교"))
freq(KG2$RELFA_n)

## KG2$RELFA_n 
##        Frequency Percent Valid Percent
## 무교        1398  36.473        58.987
## 불교         642  16.749        27.089
## 개신교       231   6.027         9.747
## 천주교        99   2.583         4.177
## NA's        1463  38.169              
## Total       3833 100.000       100.000

종교적 분위기 속에서 자랐나?

freq(KG2$RELUP)

## KG2$RELUP 
##       Frequency   Percent
## -8           55   1.43491
## -1         2292  59.79650
## 1           411  10.72267
## 2           157   4.09601
## 3           859  22.41064
## 6             5   0.13045
## 7             5   0.13045
## 8             6   0.15654
## 9            17   0.44352
## 11           14   0.36525
## 14            1   0.02609
## 15            1   0.02609
## 77           10   0.26089
## Total      3833 100.00000
KG2$RELUP_n <- ifelse(KG2$RELUP == -1 & KG2$YEAR_n==2013, 99, KG2$RELUP)
KG2$RELUP_n <- ifelse(KG2$RELUP_n == -1, 1,
                            ifelse(KG2$RELUP_n == 3, 2,
                                   ifelse(KG2$RELUP_n == 1, 3,
                                          ifelse(KG2$RELUP_n == 2, 4, NA))))
KG2$RELUP_n <- factor(KG2$RELUP_n
                            , levels = c(1:4)
                            , labels = c("무교", "불교", "개신교", "천주교"))
freq(KG2$RELUP_n)

## KG2$RELUP_n 
##        Frequency Percent Valid Percent
## 무교         998  26.037        41.155
## 불교         859  22.411        35.423
## 개신교       411  10.723        16.948
## 천주교       157   4.096         6.474
## NA's        1408  36.734              
## Total       3833 100.000       100.000

얼마나 자주 예배, 미사?

descr::freq(kgssdata$ATTEND)

## kgssdata$ATTEND 
##       Frequency Percent
## -8           56   1.461
## 1           347   9.053
## 2           552  14.401
## 3           144   3.757
## 4           180   4.696
## 5           497  12.966
## 6           170   4.435
## 7           114   2.974
## 8          1773  46.256
## Total      3833 100.000
KG2$ATTEND_n <- ifelse(kgssdata$ATTEND == 1, 8,
                             ifelse(kgssdata$ATTEND ==2, 7,
                                    ifelse(kgssdata$ATTEND==3, 6,
                                           ifelse(kgssdata$ATTEND==4, 5,
                                                  ifelse(kgssdata$ATTEND==5, 4,
                                                         ifelse(kgssdata$ATTEND==6,3,
                                                                ifelse(kgssdata$ATTEND==7,2,
                                                                       ifelse(kgssdata$ATTEND==8,1, NA))))))))
summary(KG2$ATTEND_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   1.000   3.000   3.416   6.000   8.000      56
descr::freq(KG2$ATTEND_n)

## KG2$ATTEND_n 
##       Frequency Percent Valid Percent
## 1          1773  46.256        46.942
## 2           114   2.974         3.018
## 3           170   4.435         4.501
## 4           497  12.966        13.159
## 5           180   4.696         4.766
## 6           144   3.757         3.813
## 7           552  14.401        14.615
## 8           347   9.053         9.187
## NA's         56   1.461              
## Total      3833 100.000       100.000

스스로 믿음이 강하다고 보는가?

freq(kgssdata$RELITEN)

## kgssdata$RELITEN 
##       Frequency  Percent
## -8           37   0.9653
## -1         1677  43.7516
## 1           428  11.1662
## 2           657  17.1406
## 3          1034  26.9763
## Total      3833 100.0000
KG2$RELITEN_n <- ifelse(kgssdata$RELITEN == 3, 1,
                              ifelse(kgssdata$RELITEN ==2,2,
                                     ifelse(kgssdata$RELITEN==1,3,NA)))
freq(KG2$RELITEN_n)

## KG2$RELITEN_n 
##       Frequency Percent Valid Percent
## 1          1034   26.98         48.80
## 2           657   17.14         31.01
## 3           428   11.17         20.20
## NA's       1714   44.72              
## Total      3833  100.00        100.00

얼마나 자주 기도?

freq(KG2$PRAYFREQ)

## KG2$PRAYFREQ 
##       Frequency   Percent
## -8            2   0.05218
## -1         1294  33.75946
## 1          1122  29.27211
## 2            67   1.74798
## 3            78   2.03496
## 4           279   7.27889
## 5            88   2.29585
## 6            93   2.42630
## 7            63   1.64362
## 8           135   3.52205
## 9           308   8.03548
## 10          114   2.97417
## 11          171   4.46126
## 98           19   0.49570
## Total      3833 100.00000
KG2$PRAYFREQ_n <- ifelse(KG2$PRAYFREQ <0, NA,
                               ifelse(KG2$PRAYFREQ == 98, NA,
                                      ifelse(KG2$PRAYFREQ==10, NA, KG2$PRAYFREQ)))
freq(KG2$PRAYFREQ_n)

## KG2$PRAYFREQ_n 
##       Frequency Percent Valid Percent
## 1          1122  29.272        46.672
## 2            67   1.748         2.787
## 3            78   2.035         3.245
## 4           279   7.279        11.606
## 5            88   2.296         3.661
## 6            93   2.426         3.869
## 7            63   1.644         2.621
## 8           135   3.522         5.616
## 9           308   8.035        12.812
## 11          171   4.461         7.113
## NA's       1429  37.282              
## Total      3833 100.000       100.000

종교의식 외 모임, 활동 참여

freq(KG2$RELACT)

## KG2$RELACT 
##       Frequency  Percent
## -8            6   0.1565
## -1         1294  33.7595
## 1           657  17.1406
## 2            51   1.3306
## 3            74   1.9306
## 4           203   5.2961
## 5            69   1.8002
## 6            71   1.8523
## 7            28   0.7305
## 8           158   4.1221
## 9           135   3.5220
## 10         1078  28.1242
## 98            9   0.2348
## Total      3833 100.0000
KG2$RELACT_n <- ifelse(KG2$RELACT <0, NA,
                             ifelse(KG2$RELACT == 98, NA,
                                    ifelse(KG2$RELACT==10, NA, KG2$RELACT)))
freq(KG2$RELACT_n)

## KG2$RELACT_n 
##       Frequency  Percent Valid Percent
## 1           657  17.1406        45.436
## 2            51   1.3306         3.527
## 3            74   1.9306         5.118
## 4           203   5.2961        14.039
## 5            69   1.8002         4.772
## 6            71   1.8523         4.910
## 7            28   0.7305         1.936
## 8           158   4.1221        10.927
## 9           135   3.5220         9.336
## NA's       2387  62.2750              
## Total      3833 100.0000       100.000

자신이 얼마나 종교적인가? 높을수록 종교적

freq(KG2$RELIGOUS)

## KG2$RELIGOUS 
##       Frequency  Percent
## -8           19   0.4957
## -1         1294  33.7595
## 1           172   4.4873
## 2           204   5.3222
## 3           677  17.6624
## 4           508  13.2533
## 5           245   6.3919
## 6           223   5.8179
## 7           491  12.8098
## Total      3833 100.0000
KG2$RELIGOUS_n <- ifelse(KG2$RELIGOUS ==7, 1
                               , ifelse(KG2$RELIGOUS==6, 2
                                        , ifelse(KG2$RELIGOUS ==5, 3
                                                 , ifelse(KG2$RELIGOUS == 4, 4
                                                          , ifelse(KG2$RELIGOUS == 3, 5
                                                                   , ifelse(KG2$RELIGOUS ==2, 6
                                                                            , ifelse(KG2$RELIGOUS==1, 7, NA)))))))
freq(KG2$RELIGOUS_n)

## KG2$RELIGOUS_n 
##       Frequency Percent Valid Percent
## 1           491  12.810        19.484
## 2           223   5.818         8.849
## 3           245   6.392         9.722
## 4           508  13.253        20.159
## 5           677  17.662        26.865
## 6           204   5.322         8.095
## 7           172   4.487         6.825
## NA's       1313  34.255              
## Total      3833 100.000       100.000

종교 목적(외적) 친구 사귀는게 도움_ 높을수록 찬성

freq(KG2$RELGSTY2)

## KG2$RELGSTY2 
##       Frequency  Percent
## -8           27   0.7044
## -1         1294  33.7595
## 1           427  11.1401
## 2          1198  31.2549
## 3           562  14.6621
## 4           210   5.4787
## 5           115   3.0003
## Total      3833 100.0000
KG2$RELGSTY2_n <- ifelse(KG2$RELGSTY2 == 1, 5,
                            ifelse(KG2$RELGSTY2 == 2, 4,
                                   ifelse(KG2$RELGSTY2 == 3, 3,
                                          ifelse(KG2$RELGSTY2 == 4, 2,
                                                 ifelse(KG2$RELGSTY2 ==5, 1, NA)))))
freq(KG2$RELGSTY2_n)

## KG2$RELGSTY2_n 
##       Frequency Percent Valid Percent
## 1           115   3.000         4.578
## 2           210   5.479         8.360
## 3           562  14.662        22.373
## 4          1198  31.255        47.691
## 5           427  11.140        16.998
## NA's       1321  34.464              
## Total      3833 100.000       100.000

종교 목적(외적) 어렵거나 슬플 때 위안_ 높을수록 찬성

freq(KG2$RELGSTY3)

## KG2$RELGSTY3 
##       Frequency  Percent
## -8           24   0.6261
## -1         1294  33.7595
## 1           823  21.4714
## 2          1268  33.0811
## 3           284   7.4093
## 4            78   2.0350
## 5            62   1.6175
## Total      3833 100.0000
KG2$RELGSTY3_n <- ifelse(KG2$RELGSTY3 == 1, 5,
                               ifelse(KG2$RELGSTY3 == 2, 4,
                                      ifelse(KG2$RELGSTY3 == 3, 3,
                                             ifelse(KG2$RELGSTY3 == 4, 2,
                                                    ifelse(KG2$RELGSTY3 ==5, 1, NA)))))
freq(KG2$RELGSTY3_n)

## KG2$RELGSTY3_n 
##       Frequency Percent Valid Percent
## 1            62   1.618         2.465
## 2            78   2.035         3.101
## 3           284   7.409        11.292
## 4          1268  33.081        50.417
## 5           823  21.471        32.724
## NA's       1318  34.386              
## Total      3833 100.000       100.000

종교 목적(내적) 나에겐 오직 신이 존재하기에 삶이 의미가 있다

summary(kgssdata$SPIRIT3)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -8.000  -1.000   3.000   2.108   5.000   5.000
KG2$SPIRIT3_n <- ifelse(kgssdata$SPIRIT3 == 1, 5,
                               ifelse(kgssdata$SPIRIT3 == 2, 4,
                                      ifelse(kgssdata$SPIRIT3 == 3, 3,
                                             ifelse(kgssdata$SPIRIT3 == 4, 2,
                                                    ifelse(kgssdata$SPIRIT3 ==5, 1, NA)))))
summary(KG2$SPIRIT3_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   1.000   2.000   2.201   3.000   5.000    1317

####다음 종교집단에 대한 의견은? 개신교 _ 높을수록 부정적

freq(KG2$REGGRP1)

## KG2$REGGRP1 
##       Frequency  Percent
## -8           38   0.9914
## -1         1294  33.7595
## 1           332   8.6616
## 2           494  12.8881
## 3           894  23.3238
## 4           485  12.6533
## 5           296   7.7224
## Total      3833 100.0000
KG2$REGGRP1_n <- ifelse(KG2$REGGRP1 <0, NA, KG2$REGGRP1)
freq(KG2$REGGRP1_n)                               

## KG2$REGGRP1_n 
##       Frequency Percent Valid Percent
## 1           332   8.662         13.27
## 2           494  12.888         19.75
## 3           894  23.324         35.75
## 4           485  12.653         19.39
## 5           296   7.722         11.84
## NA's       1332  34.751              
## Total      3833 100.000        100.00

다음 종교집단에 대한 의견은? 천주교 _ 높을수록 부정적

freq(KG2$REGGRP2)

## KG2$REGGRP2 
##       Frequency  Percent
## -8           32   0.8349
## -1         1294  33.7595
## 1           290   7.5659
## 2           944  24.6282
## 3           957  24.9674
## 4           197   5.1396
## 5           119   3.1046
## Total      3833 100.0000
KG2$REGGRP2_n <- ifelse(KG2$REGGRP2 <0, NA, KG2$REGGRP2)
freq(KG2$REGGRP2_n) 

## KG2$REGGRP2_n 
##       Frequency Percent Valid Percent
## 1           290   7.566        11.568
## 2           944  24.628        37.655
## 3           957  24.967        38.173
## 4           197   5.140         7.858
## 5           119   3.105         4.747
## NA's       1326  34.594              
## Total      3833 100.000       100.000

다음 종교집단에 대한 의견은? 불교 _ 높을수록 부정적

freq(KG2$REGGRP3)

## KG2$REGGRP3 
##       Frequency  Percent
## -8           28   0.7305
## -1         1294  33.7595
## 1           288   7.5137
## 2           962  25.0978
## 3           944  24.6282
## 4           180   4.6961
## 5           137   3.5742
## Total      3833 100.0000
KG2$REGGRP3_n <- ifelse(KG2$REGGRP3 <0, NA, KG2$REGGRP3)
freq(KG2$REGGRP3_n)

## KG2$REGGRP3_n 
##       Frequency Percent Valid Percent
## 1           288   7.514        11.470
## 2           962  25.098        38.311
## 3           944  24.628        37.595
## 4           180   4.696         7.168
## 5           137   3.574         5.456
## NA's       1322  34.490              
## Total      3833 100.000       100.000

다음 종교집단에 대한 의견은? 원불교 _ 높을수록 부정적

freq(kgssdata$REGGRP4)

## kgssdata$REGGRP4 
##       Frequency Percent
## -8           99   2.583
## -1         1294  33.759
## 1            79   2.061
## 2           412  10.749
## 3          1361  35.507
## 4           361   9.418
## 5           227   5.922
## Total      3833 100.000
KG2$REGGRP4_n <- ifelse(kgssdata$REGGRP4 <0, NA, kgssdata$REGGRP4)
freq(KG2$REGGRP4_n) 

## KG2$REGGRP4_n 
##       Frequency Percent Valid Percent
## 1            79   2.061         3.238
## 2           412  10.749        16.885
## 3          1361  35.507        55.779
## 4           361   9.418        14.795
## 5           227   5.922         9.303
## NA's       1393  36.342              
## Total      3833 100.000       100.000

다음 종교집단에 대한 의견은? 천도교 _ 높을수록 부정적

freq(KG2$REGGRP5)

## KG2$REGGRP5 
##       Frequency  Percent
## -8          133   3.4699
## -1         1294  33.7595
## 1            36   0.9392
## 2           256   6.6788
## 3          1407  36.7075
## 4           412  10.7488
## 5           295   7.6963
## Total      3833 100.0000
KG2$REGGRP5_n <- ifelse(KG2$REGGRP5 <0, NA, KG2$REGGRP5)
freq(KG2$REGGRP5_n)

## KG2$REGGRP5_n 
##       Frequency  Percent Valid Percent
## 1            36   0.9392         1.496
## 2           256   6.6788        10.640
## 3          1407  36.7075        58.479
## 4           412  10.7488        17.124
## 5           295   7.6963        12.261
## NA's       1427  37.2293              
## Total      3833 100.0000       100.000

다음 종교집단에 대한 의견은? 이슬람교 _ 높을수록 부정적

freq(KG2$REGGRP6)

## KG2$REGGRP6 
##       Frequency  Percent
## -8          132   3.4438
## -1         1294  33.7595
## 1            35   0.9131
## 2           187   4.8787
## 3          1234  32.1941
## 4           488  12.7315
## 5           463  12.0793
## Total      3833 100.0000
KG2$REGGRP6_n <- ifelse(KG2$REGGRP6 <0, NA, KG2$REGGRP6)
freq(KG2$REGGRP6_n) 

## KG2$REGGRP6_n 
##       Frequency  Percent Valid Percent
## 1            35   0.9131         1.454
## 2           187   4.8787         7.769
## 3          1234  32.1941        51.267
## 4           488  12.7315        20.274
## 5           463  12.0793        19.236
## NA's       1426  37.2032              
## Total      3833 100.0000       100.000

다음 종교집단에 대한 의견은? 힌두교 _ 높을수록 부정적

freq(KG2$REGGRP7)

## KG2$REGGRP7 
##       Frequency  Percent
## -8          143   3.7308
## -1         1294  33.7595
## 1            33   0.8609
## 2           176   4.5917
## 3          1326  34.5943
## 4           437  11.4010
## 5           424  11.0618
## Total      3833 100.0000
KG2$REGGRP7_n <- ifelse(KG2$REGGRP7 <0, NA, KG2$REGGRP7)
freq(KG2$REGGRP7_n) 

## KG2$REGGRP7_n 
##       Frequency  Percent Valid Percent
## 1            33   0.8609         1.377
## 2           176   4.5917         7.346
## 3          1326  34.5943        55.342
## 4           437  11.4010        18.239
## 5           424  11.0618        17.696
## NA's       1437  37.4902              
## Total      3833 100.0000       100.000

다음 종교집단에 대한 의견은? 유대교 _ 높을수록 부정적

freq(KG2$REGGRP8)

## KG2$REGGRP8 
##       Frequency  Percent
## -8          143   3.7308
## -1         1294  33.7595
## 1            32   0.8349
## 2           214   5.5831
## 3          1359  35.4553
## 4           443  11.5575
## 5           348   9.0791
## Total      3833 100.0000
KG2$REGGRP8_n <- ifelse(KG2$REGGRP8 <0, NA, KG2$REGGRP8)
freq(KG2$REGGRP8_n) 

## KG2$REGGRP8_n 
##       Frequency  Percent Valid Percent
## 1            32   0.8349         1.336
## 2           214   5.5831         8.932
## 3          1359  35.4553        56.720
## 4           443  11.5575        18.489
## 5           348   9.0791        14.524
## NA's       1437  37.4902              
## Total      3833 100.0000       100.000

다음 종교집단에 대한 의견은? 무교 _ 높을수록 부정적

freq(KG2$REGGRP9)

## KG2$REGGRP9 
##       Frequency Percent
## -8           69   1.800
## -1         1294  33.759
## 1           205   5.348
## 2           430  11.218
## 3          1502  39.186
## 4           180   4.696
## 5           153   3.992
## Total      3833 100.000
KG2$REGGRP9_n <- ifelse(KG2$REGGRP9 <0, NA, KG2$REGGRP9)
freq(KG2$REGGRP9_n) 

## KG2$REGGRP9_n 
##       Frequency Percent Valid Percent
## 1           205   5.348         8.300
## 2           430  11.218        17.409
## 3          1502  39.186        60.810
## 4           180   4.696         7.287
## 5           153   3.992         6.194
## NA's       1363  35.560              
## Total      3833 100.000       100.000
다음 종교집단에 대한 의견(개신교, 무교 제외)
KG2$REGGRP_t1_n <- (
                          +KG2$REGGRP2_n
                          +KG2$REGGRP3_n
                          +KG2$REGGRP4_n
                          +KG2$REGGRP5_n
                          +KG2$REGGRP6_n
                          +KG2$REGGRP7_n
                          +KG2$REGGRP8_n)/7
freq(KG2$REGGRP_t1_n)

## KG2$REGGRP_t1_n 
##                  Frequency   Percent Valid Percent
## 1                       25   0.65223       1.05977
## 1.14285714285714         2   0.05218       0.08478
## 1.28571428571429         1   0.02609       0.04239
## 1.42857142857143         2   0.05218       0.08478
## 1.57142857142857         4   0.10436       0.16956
## 1.71428571428571         3   0.07827       0.12717
## 1.85714285714286        24   0.62614       1.01738
## 2                      100   2.60892       4.23908
## 2.14285714285714        24   0.62614       1.01738
## 2.28571428571429        39   1.01748       1.65324
## 2.42857142857143        66   1.72189       2.79780
## 2.57142857142857       105   2.73937       4.45104
## 2.71428571428571       250   6.52231      10.59771
## 2.85714285714286       282   7.35716      11.95422
## 3                      564  14.71432      23.90844
## 3.14285714285714       113   2.94808       4.79017
## 3.28571428571429       108   2.81764       4.57821
## 3.42857142857143        92   2.40021       3.89996
## 3.57142857142857        89   2.32194       3.77279
## 3.71428571428571        71   1.85233       3.00975
## 3.85714285714286        53   1.38273       2.24671
## 4                       90   2.34803       3.81518
## 4.14285714285714        58   1.51318       2.45867
## 4.28571428571429        33   0.86094       1.39890
## 4.42857142857143        30   0.78268       1.27173
## 4.57142857142857        28   0.73050       1.18694
## 4.71428571428571        25   0.65223       1.05977
## 4.85714285714286        15   0.39134       0.63586
## 5                       63   1.64362       2.67062
## NA's                  1474  38.45552              
## Total                 3833 100.00000     100.00000
다음 종교집단에 대한 의견(천주교, 불교, 무교 제외)
KG2$REGGRP_t2_n <- (
  +KG2$REGGRP4_n
  +KG2$REGGRP5_n
  +KG2$REGGRP6_n
  +KG2$REGGRP7_n
  +KG2$REGGRP8_n)/6
freq(KG2$REGGRP_t2_n)

## KG2$REGGRP_t2_n 
##                   Frequency   Percent Valid Percent
## 0.833333333333333        26   0.67832       1.10123
## 1                         2   0.05218       0.08471
## 1.16666666666667          2   0.05218       0.08471
## 1.5                       5   0.13045       0.21177
## 1.66666666666667        117   3.05244       4.95553
## 1.83333333333333         16   0.41743       0.67768
## 2                        34   0.88703       1.44007
## 2.16666666666667         60   1.56535       2.54130
## 2.33333333333333        108   2.81764       4.57433
## 2.5                     981  25.59353      41.55019
## 2.66666666666667        122   3.18289       5.16730
## 2.83333333333333        128   3.33942       5.42143
## 3                       117   3.05244       4.95553
## 3.16666666666667         85   2.21758       3.60017
## 3.33333333333333        186   4.85260       7.87802
## 3.5                      67   1.74798       2.83778
## 3.66666666666667         43   1.12184       1.82126
## 3.83333333333333         45   1.17402       1.90597
## 4                        34   0.88703       1.44007
## 4.16666666666667        183   4.77433       7.75095
## NA's                   1472  38.40334              
## Total                  3833 100.00000     100.00000

직장에서 함께 일하는 동료로 받아들일 것인가? 1이 그렇다 2가 아니다

일본인
freq(KG2$SD1JP)

## KG2$SD1JP 
##       Frequency  Percent
## -8            9   0.2348
## -1         1294  33.7595
## 1          2025  52.8307
## 2           505  13.1751
## Total      3833 100.0000
KG2$SD1JP_n <- ifelse(KG2$SD1JP <0, NA, KG2$SD1JP)
KG2$SD1JP_n <- factor(KG2$SD1JP_n
                            , levels = c(1:2)
                            , labels = c("그렇다", "아니다"))
freq(KG2$SD1JP_n)

## KG2$SD1JP_n 
##        Frequency Percent Valid Percent
## 그렇다      2025   52.83         80.04
## 아니다       505   13.18         19.96
## NA's        1303   33.99              
## Total       3833  100.00        100.00
중국인
freq(KG2$SD1CN)

## KG2$SD1CN 
##       Frequency  Percent
## -8           15   0.3913
## -1         1294  33.7595
## 1          1912  49.8826
## 2           612  15.9666
## Total      3833 100.0000
KG2$SD1CN_n <- ifelse(KG2$SD1CN <0, NA, KG2$SD1CN)
KG2$SD1CN_n <- factor(KG2$SD1CN_n
                            , levels = c(1:2)
                            , labels = c("그렇다", "아니다"))
freq(KG2$SD1CN_n)

## KG2$SD1CN_n 
##        Frequency Percent Valid Percent
## 그렇다      1912   49.88         75.75
## 아니다       612   15.97         24.25
## NA's        1309   34.15              
## Total       3833  100.00        100.00
동남아인
freq(KG2$SD1SEA)

## KG2$SD1SEA 
##       Frequency  Percent
## -8           15   0.3913
## -1         1294  33.7595
## 1          1948  50.8218
## 2           576  15.0274
## Total      3833 100.0000
KG2$SD1SEA_n <- ifelse(KG2$SD1SEA <0, NA, KG2$SD1SEA)
KG2$SD1SEA_n <- factor(KG2$SD1SEA_n
                            , levels = c(1:2)
                            , labels = c("그렇다", "아니다"))
freq(KG2$SD1SEA_n)

## KG2$SD1SEA_n 
##        Frequency Percent Valid Percent
## 그렇다      1948   50.82         77.18
## 아니다       576   15.03         22.82
## NA's        1309   34.15              
## Total       3833  100.00        100.00
미국/캐나다인
freq(KG2$SD1NAM)

## KG2$SD1NAM 
##       Frequency  Percent
## -8           13   0.3392
## -1         1294  33.7595
## 1          2085  54.3960
## 2           441  11.5053
## Total      3833 100.0000
KG2$SD1NAM_n <- ifelse(KG2$SD1NAM <0, NA, KG2$SD1NAM)
KG2$SD1NAM_n <- factor(KG2$SD1NAM_n
                             , levels = c(1:2)
                             , labels = c("그렇다", "아니다"))
freq(KG2$SD1NAM_n)

## KG2$SD1NAM_n 
##        Frequency Percent Valid Percent
## 그렇다      2085   54.40         82.54
## 아니다       441   11.51         17.46
## NA's        1307   34.10              
## Total       3833  100.00        100.00
유럽인
freq(KG2$SD1EUR)

## KG2$SD1EUR 
##       Frequency  Percent
## -8           15   0.3913
## -1         1294  33.7595
## 1          2050  53.4829
## 2           474  12.3663
## Total      3833 100.0000
KG2$SD1EUR_n <- ifelse(KG2$SD1EUR <0, NA, KG2$SD1EUR)
KG2$SD1EUR_n <- factor(KG2$SD1EUR_n
                             , levels = c(1:2)
                             , labels = c("그렇다", "아니다"))
freq(KG2$SD1EUR_n)

## KG2$SD1EUR_n 
##        Frequency Percent Valid Percent
## 그렇다      2050   53.48         81.22
## 아니다       474   12.37         18.78
## NA's        1309   34.15              
## Total       3833  100.00        100.00

동네주민으로 받아들일 것인가? 1이 그렇다 2가 아니다

일본인
freq(KG2$SD2JP)

## KG2$SD2JP 
##       Frequency  Percent
## -8           23   0.6001
## -1         1294  33.7595
## 1          2142  55.8831
## 2           374   9.7574
## Total      3833 100.0000
KG2$SD2JP_n <- ifelse(KG2$SD2JP <0, NA, KG2$SD2JP)
KG2$SD2JP_n <- factor(KG2$SD2JP_n
                            , levels = c(1:2)
                            , labels = c("그렇다", "아니다"))
freq(KG2$SD2JP_n)

## KG2$SD2JP_n 
##        Frequency Percent Valid Percent
## 그렇다      2142  55.883         85.14
## 아니다       374   9.757         14.86
## NA's        1317  34.360              
## Total       3833 100.000        100.00
중국인
freq(KG2$SD2CN)

## KG2$SD2CN 
##       Frequency  Percent
## -8           29   0.7566
## -1         1294  33.7595
## 1          2001  52.2045
## 2           509  13.2794
## Total      3833 100.0000
KG2$SD2CN_n <- ifelse(KG2$SD2CN <0, NA, KG2$SD2CN)
KG2$SD2CN_n <- factor(KG2$SD2CN_n
                            , levels = c(1:2)
                            , labels = c("그렇다", "아니다"))
freq(KG2$SD2CN_n)

## KG2$SD2CN_n 
##        Frequency Percent Valid Percent
## 그렇다      2001   52.20         79.72
## 아니다       509   13.28         20.28
## NA's        1323   34.52              
## Total       3833  100.00        100.00
동남아인
freq(KG2$SD2SEA)

## KG2$SD2SEA 
##       Frequency  Percent
## -8           33   0.8609
## -1         1294  33.7595
## 1          2026  52.8568
## 2           480  12.5228
## Total      3833 100.0000
KG2$SD2SEA_n <- ifelse(KG2$SD2SEA <0, NA, KG2$SD2SEA)
KG2$SD2SEA_n <- factor(KG2$SD2SEA_n
                             , levels = c(1:2)
                             , labels = c("그렇다", "아니다"))
freq(KG2$SD2SEA_n)

## KG2$SD2SEA_n 
##        Frequency Percent Valid Percent
## 그렇다      2026   52.86         80.85
## 아니다       480   12.52         19.15
## NA's        1327   34.62              
## Total       3833  100.00        100.00
미국/캐나다인
freq(KG2$SD2NAM)

## KG2$SD2NAM 
##       Frequency  Percent
## -8           31   0.8088
## -1         1294  33.7595
## 1          2150  56.0918
## 2           358   9.3399
## Total      3833 100.0000
KG2$SD2NAM_n <- ifelse(KG2$SD2NAM <0, NA, KG2$SD2NAM)
KG2$SD2NAM_n <- factor(KG2$SD2NAM_n
                             , levels = c(1:2)
                             , labels = c("그렇다", "아니다"))
freq(KG2$SD2NAM_n)

## KG2$SD2NAM_n 
##        Frequency Percent Valid Percent
## 그렇다      2150   56.09         85.73
## 아니다       358    9.34         14.27
## NA's        1325   34.57              
## Total       3833  100.00        100.00
유럽인
freq(KG2$SD2EUR)

## KG2$SD2EUR 
##       Frequency Percent
## -8           34   0.887
## -1         1294  33.759
## 1          2122  55.361
## 2           383   9.992
## Total      3833 100.000
KG2$SD2EUR_n <- ifelse(KG2$SD2EUR <0, NA, KG2$SD2EUR)
KG2$SD2EUR_n <- factor(KG2$SD2EUR_n
                             , levels = c(1:2)
                             , labels = c("그렇다", "아니다"))
freq(KG2$SD2EUR_n)

## KG2$SD2EUR_n 
##        Frequency Percent Valid Percent
## 그렇다      2122  55.361         84.71
## 아니다       383   9.992         15.29
## NA's        1328  34.646              
## Total       3833 100.000        100.00

가까운 친척으로 받아들일 것인가? 1이 그렇다 2가 아니다

일본인
freq(KG2$SD3JP)

## KG2$SD3JP 
##       Frequency  Percent
## -8           14   0.3652
## -1         1294  33.7595
## 1          1704  44.4560
## 2           821  21.4193
## Total      3833 100.0000
KG2$SD3JP_n <- ifelse(KG2$SD3JP <0, NA, KG2$SD3JP)
KG2$SD3JP_n <- factor(KG2$SD3JP_n
                            , levels = c(1:2)
                            , labels = c("그렇다", "아니다"))
freq(KG2$SD3JP_n)

## KG2$SD3JP_n 
##        Frequency Percent Valid Percent
## 그렇다      1704   44.46         67.49
## 아니다       821   21.42         32.51
## NA's        1308   34.12              
## Total       3833  100.00        100.00
중국인
freq(KG2$SD3CN)

## KG2$SD3CN 
##       Frequency  Percent
## -8           24   0.6261
## -1         1294  33.7595
## 1          1568  40.9079
## 2           947  24.7065
## Total      3833 100.0000
KG2$SD3CN_n <- ifelse(KG2$SD3CN <0, NA, KG2$SD3CN)
KG2$SD3CN_n <- factor(KG2$SD3CN_n
                            , levels = c(1:2)
                            , labels = c("그렇다", "아니다"))
freq(KG2$SD3CN_n)

## KG2$SD3CN_n 
##        Frequency Percent Valid Percent
## 그렇다      1568   40.91         62.35
## 아니다       947   24.71         37.65
## NA's        1318   34.39              
## Total       3833  100.00        100.00
동남아인
freq(KG2$SD3SEA)

## KG2$SD3SEA 
##       Frequency  Percent
## -8           29   0.7566
## -1         1294  33.7595
## 1          1559  40.6731
## 2           951  24.8109
## Total      3833 100.0000
KG2$SD3SEA_n <- ifelse(KG2$SD3SEA <0, NA, KG2$SD3SEA)
KG2$SD3SEA_n <- factor(KG2$SD3SEA_n
                             , levels = c(1:2)
                             , labels = c("그렇다", "아니다"))
freq(KG2$SD3SEA_n)

## KG2$SD3SEA_n 
##        Frequency Percent Valid Percent
## 그렇다      1559   40.67         62.11
## 아니다       951   24.81         37.89
## NA's        1323   34.52              
## Total       3833  100.00        100.00
미국/캐나다인
freq(KG2$SD3NAM)

## KG2$SD3NAM 
##       Frequency  Percent
## -8           25   0.6522
## -1         1294  33.7595
## 1          1729  45.1083
## 2           785  20.4800
## Total      3833 100.0000
KG2$SD3NAM_n <- ifelse(KG2$SD3NAM <0, NA, KG2$SD3NAM)
KG2$SD3NAM_n <- factor(KG2$SD3NAM_n
                             , levels = c(1:2)
                             , labels = c("그렇다", "아니다"))
freq(KG2$SD3NAM_n)

## KG2$SD3NAM_n 
##        Frequency Percent Valid Percent
## 그렇다      1729   45.11         68.77
## 아니다       785   20.48         31.23
## NA's        1319   34.41              
## Total       3833  100.00        100.00
유럽인
freq(KG2$SD3EUR)

## KG2$SD3EUR 
##       Frequency  Percent
## -8           27   0.7044
## -1         1294  33.7595
## 1          1701  44.3778
## 2           811  21.1584
## Total      3833 100.0000
KG2$SD3EUR_n <- ifelse(KG2$SD3EUR <0, NA, KG2$SD3EUR)
KG2$SD3EUR_n <- factor(KG2$SD3EUR_n
                             , levels = c(1:2)
                             , labels = c("그렇다", "아니다"))
freq(KG2$SD3EUR_n)

## KG2$SD3EUR_n 
##        Frequency Percent Valid Percent
## 그렇다      1701   44.38         67.71
## 아니다       811   21.16         32.29
## NA's        1321   34.46              
## Total       3833  100.00        100.00

외국인 노동자가 한국에 감소하기를 바라는가? 높을수록 감소하길 바람

freq(KG2$FORNWKER)

## KG2$FORNWKER 
##       Frequency Percent
## -8           69   1.800
## -1         1294  33.759
## 1            52   1.357
## 2           421  10.984
## 3           776  20.245
## 4           928  24.211
## 5           293   7.644
## Total      3833 100.000
KG2$FORNWKER_n <- ifelse(KG2$FORNWKER <0, NA, KG2$FORNWKER)
freq(KG2$FORNWKER_n)

## KG2$FORNWKER_n 
##       Frequency Percent Valid Percent
## 1            52   1.357         2.105
## 2           421  10.984        17.045
## 3           776  20.245        31.417
## 4           928  24.211        37.571
## 5           293   7.644        11.862
## NA's       1363  35.560              
## Total      3833 100.000       100.000

결혼이주 여성이 한국에 감소하기를 바라는가? 높을수록 감소하길 바람

freq(KG2$FORNBRID)

## KG2$FORNBRID 
##       Frequency Percent
## -8           91   2.374
## -1         1294  33.759
## 1            57   1.487
## 2           487  12.705
## 3           863  22.515
## 4           801  20.897
## 5           240   6.261
## Total      3833 100.000
KG2$FORNBRID_n <- ifelse(KG2$FORNBRID <0, NA, KG2$FORNBRID)
freq(KG2$FORNBRID_n)

## KG2$FORNBRID_n 
##       Frequency Percent Valid Percent
## 1            57   1.487         2.328
## 2           487  12.705        19.894
## 3           863  22.515        35.253
## 4           801  20.897        32.721
## 5           240   6.261         9.804
## NA's       1385  36.134              
## Total      3833 100.000       100.000

하루 평균 몇 명과 연락하거나 만나는가(가족, 친척 제외)

freq(KG2$CONTACT3)

## KG2$CONTACT3 
##       Frequency  Percent
## -8            8   0.2087
## -1         1294  33.7595
## 1           132   3.4438
## 2          1116  29.1156
## 3           615  16.0449
## 4           378   9.8617
## 5           207   5.4005
## 6            56   1.4610
## 7            27   0.7044
## Total      3833 100.0000
KG2$CONTACT3_n <- ifelse(KG2$CONTACT3 <0, NA, KG2$CONTACT3)
freq(KG2$CONTACT3_n)

## KG2$CONTACT3_n 
##       Frequency  Percent Valid Percent
## 1           132   3.4438         5.215
## 2          1116  29.1156        44.093
## 3           615  16.0449        24.299
## 4           378   9.8617        14.935
## 5           207   5.4005         8.179
## 6            56   1.4610         2.213
## 7            27   0.7044         1.067
## NA's       1302  33.9682              
## Total      3833 100.0000       100.000

국가경제 보호 위해 외국 상품 수입 제한해야 한다_높을수록 동의

freq(KG2$IMPLIMI0)

## KG2$IMPLIMI0 
##       Frequency  Percent
## -8            6   0.1565
## -1         1294  33.7595
## 1           141   3.6786
## 2           292   7.6181
## 3           600  15.6535
## 4           583  15.2100
## 5           572  14.9230
## 6           268   6.9919
## 7            77   2.0089
## Total      3833 100.0000
KG2$IMPLIMI0_n <- ifelse(KG2$IMPLIMI0 ==7, 1
                               , ifelse(KG2$IMPLIMI0==6, 2
                                        , ifelse(KG2$IMPLIMI0 ==5, 3
                                                 , ifelse(KG2$IMPLIMI0 == 4, 4
                                                          , ifelse(KG2$IMPLIMI0 == 3, 5
                                                                   , ifelse(KG2$IMPLIMI0 ==2, 6
                                                                            , ifelse(KG2$IMPLIMI0==1, 7, NA)))))))
freq(KG2$IMPLIMI0_n)

## KG2$IMPLIMI0_n 
##       Frequency Percent Valid Percent
## 1            77   2.009         3.040
## 2           268   6.992        10.580
## 3           572  14.923        22.582
## 4           583  15.210        23.016
## 5           600  15.654        23.687
## 6           292   7.618        11.528
## 7           141   3.679         5.567
## NA's       1300  33.916              
## Total      3833 100.000       100.000

타국가와 갈등 있더라도 국가 이익을 추구해야 함_높을수록 동의

freq(KG2$SELFINT0)

## KG2$SELFINT0 
##       Frequency  Percent
## -8            6   0.1565
## -1         1294  33.7595
## 1           251   6.5484
## 2           505  13.1751
## 3           747  19.4887
## 4           453  11.8184
## 5           432  11.2705
## 6           119   3.1046
## 7            26   0.6783
## Total      3833 100.0000
KG2$SELFINT0_n <- ifelse(KG2$SELFINT0 ==7, 1
                               , ifelse(KG2$SELFINT0==6, 2
                                        , ifelse(KG2$SELFINT0 ==5, 3
                                                 , ifelse(KG2$SELFINT0 == 4, 4
                                                          , ifelse(KG2$SELFINT0 == 3, 5
                                                                   , ifelse(KG2$SELFINT0 ==2, 6
                                                                            , ifelse(KG2$SELFINT0==1, 7, NA)))))))
freq(KG2$SELFINT0_n)

## KG2$SELFINT0_n 
##       Frequency  Percent Valid Percent
## 1            26   0.6783         1.026
## 2           119   3.1046         4.698
## 3           432  11.2705        17.055
## 4           453  11.8184        17.884
## 5           747  19.4887        29.491
## 6           505  13.1751        19.937
## 7           251   6.5484         9.909
## NA's       1300  33.9160              
## Total      3833 100.0000       100.000

외국 영화, 음악, 책 등에 노출되면 한국문화는 손상됨_높을수록 동의

freq(KG2$FORCUL0)

## KG2$FORCUL0 
##       Frequency  Percent
## -8            6   0.1565
## -1         1294  33.7595
## 1           128   3.3394
## 2           241   6.2875
## 3           454  11.8445
## 4           548  14.2969
## 5           650  16.9580
## 6           380   9.9139
## 7           132   3.4438
## Total      3833 100.0000
KG2$FORCUL0_n <- ifelse(KG2$FORCUL0 ==7, 1
                               , ifelse(KG2$FORCUL0==6, 2
                                        , ifelse(KG2$FORCUL0 ==5, 3
                                                 , ifelse(KG2$FORCUL0 == 4, 4
                                                          , ifelse(KG2$FORCUL0 == 3, 5
                                                                   , ifelse(KG2$FORCUL0 ==2, 6
                                                                            , ifelse(KG2$FORCUL0==1, 7, NA)))))))
freq(KG2$FORCUL0_n)

## KG2$FORCUL0_n 
##       Frequency Percent Valid Percent
## 1           132   3.444         5.211
## 2           380   9.914        15.002
## 3           650  16.958        25.661
## 4           548  14.297        21.634
## 5           454  11.845        17.923
## 6           241   6.288         9.514
## 7           128   3.339         5.053
## NA's       1300  33.916              
## Total      3833 100.000       100.000

아내는 경력 쌓기보다는 남편 경력 쌓게 도와야

freq(KG2$SEXROLE1)

## KG2$SEXROLE1 
##       Frequency   Percent Valid Percent
## -8            3   0.07827       0.08034
## -1         1294  33.75946      34.65453
## 1           376   9.80955      10.06963
## 2           406  10.59223      10.87306
## 3           534  13.93165      14.30102
## 4           435  11.34881      11.64971
## 5           404  10.54005      10.81950
## 6           152   3.96556       4.07070
## 7           130   3.39160       3.48152
## NA's         99   2.58283              
## Total      3833 100.00000     100.00000
KG2$SEXROLE1_n <- ifelse(KG2$SEXROLE1 ==7, 1
                              , ifelse(KG2$SEXROLE1==6, 2
                                       , ifelse(KG2$SEXROLE1 ==5, 3
                                                , ifelse(KG2$SEXROLE1 == 4, 4
                                                         , ifelse(KG2$SEXROLE1 == 3, 5
                                                                  , ifelse(KG2$SEXROLE1 ==2, 6
                                                                           , ifelse(KG2$SEXROLE1==1, 7, NA)))))))
freq(KG2$SEXROLE1_n)

## KG2$SEXROLE1_n 
##       Frequency Percent Valid Percent
## 1           130   3.392         5.334
## 2           152   3.966         6.237
## 3           404  10.540        16.578
## 4           435  11.349        17.850
## 5           534  13.932        21.912
## 6           406  10.592        16.660
## 7           376   9.810        15.429
## NA's       1396  36.421              
## Total      3833 100.000       100.000

가정에서 아버지의 권위는 어떠한 경우에도 존중되어야 함

freq(KG2$PATRACH1)

## KG2$PATRACH1 
##       Frequency  Percent
## -8            6   0.1565
## -1         1294  33.7595
## 1           571  14.8969
## 2           593  15.4709
## 3           683  17.8189
## 4           278   7.2528
## 5           245   6.3919
## 6           108   2.8176
## 7            55   1.4349
## Total      3833 100.0000
KG2$PATRACH1_n <- ifelse(KG2$PATRACH1 ==7, 1
                               , ifelse(KG2$PATRACH1==6, 2
                                        , ifelse(KG2$PATRACH1 ==5, 3
                                                 , ifelse(KG2$PATRACH1 == 4, 4
                                                          , ifelse(KG2$PATRACH1 == 3, 5
                                                                   , ifelse(KG2$PATRACH1 ==2, 6
                                                                            , ifelse(KG2$PATRACH1==1, 7, NA)))))))
freq(KG2$PATRACH1_n)

## KG2$PATRACH1_n 
##       Frequency Percent Valid Percent
## 1            55   1.435         2.171
## 2           108   2.818         4.264
## 3           245   6.392         9.672
## 4           278   7.253        10.975
## 5           683  17.819        26.964
## 6           593  15.471        23.411
## 7           571  14.897        22.542
## NA's       1300  33.916              
## Total      3833 100.000       100.000

가정 내 성역할(08_18)_남편은 돈벌고 아내는 가정_높을수록 찬성

freq(KG2$HBBYWK08)

## KG2$HBBYWK08 
##       Frequency  Percent
## -8            8   0.2087
## -1         1294  33.7595
## 1           309   8.0616
## 2           535  13.9577
## 3           566  14.7665
## 4           598  15.6014
## 5           523  13.6447
## Total      3833 100.0000
KG2$HBBYWK08_n <- ifelse(KG2$HBBYWK08 ==5, 1,
                               ifelse(KG2$HBBYWK08 ==4, 2,
                                      ifelse(KG2$HBBYWK08 ==3, 3,
                                             ifelse(KG2$HBBYWK08 ==2, 4
                                                    , ifelse(KG2$HBBYWK08==1, 5
                                                             , NA)))))
freq(KG2$HBBYWK08_n)

## KG2$HBBYWK08_n 
##       Frequency Percent Valid Percent
## 1           523  13.645         20.66
## 2           598  15.601         23.63
## 3           566  14.767         22.36
## 4           535  13.958         21.14
## 5           309   8.062         12.21
## NA's       1302  33.968              
## Total      3833 100.000        100.00

가부장주의 변수 만들기

KG2$FAMILY_n1 <- KG2$SEXROLE1_n + KG2$PATRACH1_n + KG2$HBBYWK08_n
summary(KG2$FAMILY_n1)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    3.00   10.00   13.00   12.58   15.00   19.00    1407
KG2$FAMILY_n1 <- ifelse(KG2$FAMILY_n1<=10, 1,
                              ifelse(KG2$FAMILY_n1<=13, 2,
                                     ifelse(KG2$FAMILY_n1<=15, 3,
                                            ifelse(KG2$FAMILY_n1<=19, 4, NA))))
freq(KG2$FAMILY_n1)

## KG2$FAMILY_n1 
##       Frequency Percent Valid Percent
## 1           675   17.61         27.82
## 2           694   18.11         28.61
## 3           508   13.25         20.94
## 4           549   14.32         22.63
## NA's       1407   36.71              
## Total      3833  100.00        100.00

비본질적(외적) 종교성 2개 합치기

KG2$RELGSTY_t_n <- KG2$RELGSTY2_n + KG2$RELGSTY3_n
summary(KG2$RELGSTY_t_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   2.000   7.000   8.000   7.722   9.000  10.000    1327
KG2$RELGSTY_t_n <- ifelse(KG2$RELGSTY_t_n<=7, 1,
                              ifelse(KG2$RELGSTY_t_n<=8, 2,
                                     ifelse(KG2$RELGSTY_t_n<=9, 3,
                                            ifelse(KG2$RELGSTY_t_n<=10, 4, NA))))
freq(KG2$RELGSTY_t_n)

## KG2$RELGSTY_t_n 
##       Frequency Percent Valid Percent
## 1           903  23.559         36.03
## 2           885  23.089         35.32
## 3           372   9.705         14.84
## 4           346   9.027         13.81
## NA's       1327  34.620              
## Total      3833 100.000        100.00

년도 1,2,3으로

freq(KG2$YEAR_n)

## KG2$YEAR_n 
##       Frequency Percent
## 2008       1508   39.34
## 2013       1294   33.76
## 2018       1031   26.90
## Total      3833  100.00
KG2$YEAR_n1 <- ifelse(KG2$YEAR_n == 2008, 1,
                            ifelse(KG2$YEAR_n ==2013, 2,
                                   ifelse(KG2$YEAR_n ==2018, 3, NA)))

6. 변수 재구성 하기 전 원래 변수들 제거하기

* 재구성한 변수들은 공통적으로 "_n"을 포함하고 있으니, 이게 없는 애들만 삭제하면 된다.

KG3 <- dplyr::select(KG2, contains("_n"))

*새롭게 만들어진 KG3를 csv 파일로 저장해놓기

write.table(KG3, file = "C:/RRR/kgss/kgss_raw_data/kgss_08_13_18_main.csv" #읽어온 file1.sav를 file1.csv로 새롭게 저장하되
            , sep = "," #새 데이터의 열 구분은 ","(csv파일이니깐)
            , row.names = FALSE)

7. 결측값들 Imputation 하기

library(mice)
## 
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
## 
##     filter
## The following objects are masked from 'package:base':
## 
##     cbind, rbind
mice1 <- mice(KG3, 1)
## 
##  iter imp variable
##   1   1  SEXATT1_n  SEXATT2_n  SEXATT3_n  AGE_n  AGE_n_c  EDUC_n  URBRURAL_n  PARTYLR_n  NORTHWHO_n  NORTHWHO_n2  KRPROUD_n  ABORT2_n  RELIG_n  RELLEAD1_n  RELSCI2_n  RELFUN1_n  RELFUN2_n  RELPOWR_n  RELDIFF1_n  RELEXTM1_n  RELMA_n  RELFA_n  RELUP_n  ATTEND_n  RELITEN_n  PRAYFREQ_n  RELACT_n  RELIGOUS_n  RELGSTY2_n  RELGSTY3_n  SPIRIT3_n  REGGRP1_n  REGGRP2_n  REGGRP3_n  REGGRP4_n  REGGRP5_n  REGGRP6_n  REGGRP7_n  REGGRP8_n  REGGRP9_n  REGGRP_t1_n  REGGRP_t2_n  SD1JP_n  SD1CN_n  SD1SEA_n  SD1NAM_n  SD1EUR_n  SD2JP_n  SD2CN_n  SD2SEA_n  SD2NAM_n  SD2EUR_n  SD3JP_n  SD3CN_n  SD3SEA_n  SD3NAM_n  SD3EUR_n  FORNWKER_n  FORNBRID_n  CONTACT3_n  IMPLIMI0_n  SELFINT0_n  FORCUL0_n  SEXROLE1_n  PATRACH1_n  HBBYWK08_n  FAMILY_n1  RELGSTY_t_n
##   2   1  SEXATT1_n  SEXATT2_n  SEXATT3_n  AGE_n  AGE_n_c  EDUC_n  URBRURAL_n  PARTYLR_n  NORTHWHO_n  NORTHWHO_n2  KRPROUD_n  ABORT2_n  RELIG_n  RELLEAD1_n  RELSCI2_n  RELFUN1_n  RELFUN2_n  RELPOWR_n  RELDIFF1_n  RELEXTM1_n  RELMA_n  RELFA_n  RELUP_n  ATTEND_n  RELITEN_n  PRAYFREQ_n  RELACT_n  RELIGOUS_n  RELGSTY2_n  RELGSTY3_n  SPIRIT3_n  REGGRP1_n  REGGRP2_n  REGGRP3_n  REGGRP4_n  REGGRP5_n  REGGRP6_n  REGGRP7_n  REGGRP8_n  REGGRP9_n  REGGRP_t1_n  REGGRP_t2_n  SD1JP_n  SD1CN_n  SD1SEA_n  SD1NAM_n  SD1EUR_n  SD2JP_n  SD2CN_n  SD2SEA_n  SD2NAM_n  SD2EUR_n  SD3JP_n  SD3CN_n  SD3SEA_n  SD3NAM_n  SD3EUR_n  FORNWKER_n*  FORNBRID_n*  CONTACT3_n*  IMPLIMI0_n  SELFINT0_n*  FORCUL0_n  SEXROLE1_n*  PATRACH1_n*  HBBYWK08_n  FAMILY_n1  RELGSTY_t_n
##   3   1  SEXATT1_n  SEXATT2_n  SEXATT3_n  AGE_n  AGE_n_c  EDUC_n  URBRURAL_n  PARTYLR_n  NORTHWHO_n  NORTHWHO_n2  KRPROUD_n  ABORT2_n*  RELIG_n  RELLEAD1_n*  RELSCI2_n  RELFUN1_n  RELFUN2_n  RELPOWR_n  RELDIFF1_n*  RELEXTM1_n*  RELMA_n  RELFA_n  RELUP_n  ATTEND_n  RELITEN_n  PRAYFREQ_n  RELACT_n  RELIGOUS_n*  RELGSTY2_n*  RELGSTY3_n*  SPIRIT3_n*  REGGRP1_n  REGGRP2_n  REGGRP3_n  REGGRP4_n  REGGRP5_n  REGGRP6_n  REGGRP7_n  REGGRP8_n  REGGRP9_n  REGGRP_t1_n  REGGRP_t2_n  SD1JP_n  SD1CN_n  SD1SEA_n  SD1NAM_n  SD1EUR_n  SD2JP_n  SD2CN_n  SD2SEA_n  SD2NAM_n  SD2EUR_n  SD3JP_n  SD3CN_n  SD3SEA_n  SD3NAM_n  SD3EUR_n  FORNWKER_n*  FORNBRID_n  CONTACT3_n*  IMPLIMI0_n  SELFINT0_n*  FORCUL0_n  SEXROLE1_n  PATRACH1_n  HBBYWK08_n*  FAMILY_n1  RELGSTY_t_n
##   4   1  SEXATT1_n  SEXATT2_n  SEXATT3_n  AGE_n  AGE_n_c  EDUC_n  URBRURAL_n  PARTYLR_n  NORTHWHO_n  NORTHWHO_n2  KRPROUD_n  ABORT2_n  RELIG_n  RELLEAD1_n*  RELSCI2_n*  RELFUN1_n*  RELFUN2_n*  RELPOWR_n  RELDIFF1_n  RELEXTM1_n*  RELMA_n  RELFA_n  RELUP_n  ATTEND_n  RELITEN_n  PRAYFREQ_n  RELACT_n*  RELIGOUS_n*  RELGSTY2_n  RELGSTY3_n  SPIRIT3_n  REGGRP1_n  REGGRP2_n  REGGRP3_n  REGGRP4_n  REGGRP5_n  REGGRP6_n  REGGRP7_n  REGGRP8_n  REGGRP9_n  REGGRP_t1_n  REGGRP_t2_n  SD1JP_n  SD1CN_n  SD1SEA_n  SD1NAM_n  SD1EUR_n  SD2JP_n  SD2CN_n  SD2SEA_n  SD2NAM_n  SD2EUR_n  SD3JP_n  SD3CN_n  SD3SEA_n  SD3NAM_n  SD3EUR_n  FORNWKER_n  FORNBRID_n  CONTACT3_n  IMPLIMI0_n  SELFINT0_n  FORCUL0_n  SEXROLE1_n  PATRACH1_n  HBBYWK08_n  FAMILY_n1  RELGSTY_t_n
##   5   1  SEXATT1_n  SEXATT2_n  SEXATT3_n  AGE_n  AGE_n_c  EDUC_n  URBRURAL_n  PARTYLR_n  NORTHWHO_n  NORTHWHO_n2  KRPROUD_n  ABORT2_n  RELIG_n  RELLEAD1_n  RELSCI2_n  RELFUN1_n  RELFUN2_n  RELPOWR_n  RELDIFF1_n  RELEXTM1_n  RELMA_n  RELFA_n  RELUP_n  ATTEND_n  RELITEN_n  PRAYFREQ_n  RELACT_n  RELIGOUS_n  RELGSTY2_n  RELGSTY3_n  SPIRIT3_n  REGGRP1_n  REGGRP2_n  REGGRP3_n  REGGRP4_n  REGGRP5_n  REGGRP6_n  REGGRP7_n  REGGRP8_n  REGGRP9_n*  REGGRP_t1_n  REGGRP_t2_n  SD1JP_n  SD1CN_n  SD1SEA_n  SD1NAM_n  SD1EUR_n  SD2JP_n  SD2CN_n  SD2SEA_n  SD2NAM_n  SD2EUR_n  SD3JP_n  SD3CN_n  SD3SEA_n  SD3NAM_n  SD3EUR_n  FORNWKER_n*  FORNBRID_n  CONTACT3_n*  IMPLIMI0_n  SELFINT0_n*  FORCUL0_n*  SEXROLE1_n  PATRACH1_n  HBBYWK08_n  FAMILY_n1*  RELGSTY_t_n*
## Warning: Number of logged events: 334
summary(mice1)
## Class: mids
## Number of multiple imputations:  1 
## Imputation methods:
##   SEXATT1_n   SEXATT2_n   SEXATT3_n       SEX_n       AGE_n     AGE_n_c 
##       "pmm"       "pmm"       "pmm"          ""       "pmm"   "polyreg" 
##      EDUC_n     EMPLY_n  URBRURAL_n   PARTYLR_n    party_n1    party_n2 
##       "pmm"          ""   "polyreg"       "pmm"          ""          "" 
##   MARITAL_n  NORTHWHO_n NORTHWHO_n2   KRPROUD_n    ABORT2_n     RELIG_n 
##          ""       "pmm"    "logreg"       "pmm"       "pmm"   "polyreg" 
##  RELLEAD1_n   RELSCI2_n   RELFUN1_n   RELFUN2_n   RELPOWR_n  RELDIFF1_n 
##       "pmm"       "pmm"       "pmm"       "pmm"       "pmm"       "pmm" 
##  RELEXTM1_n      YEAR_n     RELMA_n     RELFA_n     RELUP_n    ATTEND_n 
##       "pmm"          ""   "polyreg"   "polyreg"   "polyreg"       "pmm" 
##   RELITEN_n  PRAYFREQ_n    RELACT_n  RELIGOUS_n  RELGSTY2_n  RELGSTY3_n 
##       "pmm"       "pmm"       "pmm"       "pmm"       "pmm"       "pmm" 
##   SPIRIT3_n   REGGRP1_n   REGGRP2_n   REGGRP3_n   REGGRP4_n   REGGRP5_n 
##       "pmm"       "pmm"       "pmm"       "pmm"       "pmm"       "pmm" 
##   REGGRP6_n   REGGRP7_n   REGGRP8_n   REGGRP9_n REGGRP_t1_n REGGRP_t2_n 
##       "pmm"       "pmm"       "pmm"       "pmm"       "pmm"       "pmm" 
##     SD1JP_n     SD1CN_n    SD1SEA_n    SD1NAM_n    SD1EUR_n     SD2JP_n 
##    "logreg"    "logreg"    "logreg"    "logreg"    "logreg"    "logreg" 
##     SD2CN_n    SD2SEA_n    SD2NAM_n    SD2EUR_n     SD3JP_n     SD3CN_n 
##    "logreg"    "logreg"    "logreg"    "logreg"    "logreg"    "logreg" 
##    SD3SEA_n    SD3NAM_n    SD3EUR_n  FORNWKER_n  FORNBRID_n  CONTACT3_n 
##    "logreg"    "logreg"    "logreg"       "pmm"       "pmm"       "pmm" 
##  IMPLIMI0_n  SELFINT0_n   FORCUL0_n  SEXROLE1_n  PATRACH1_n  HBBYWK08_n 
##       "pmm"       "pmm"       "pmm"       "pmm"       "pmm"       "pmm" 
##   FAMILY_n1 RELGSTY_t_n     YEAR_n1 
##       "pmm"       "pmm"          "" 
## PredictorMatrix:
##           SEXATT1_n SEXATT2_n SEXATT3_n SEX_n AGE_n AGE_n_c EDUC_n EMPLY_n
## SEXATT1_n         0         1         1     1     1       1      1       0
## SEXATT2_n         1         0         1     1     1       1      1       0
## SEXATT3_n         1         1         0     1     1       1      1       0
## SEX_n             1         1         1     0     1       1      1       0
## AGE_n             1         1         1     1     0       1      1       0
## AGE_n_c           1         1         1     1     1       0      1       0
##           URBRURAL_n PARTYLR_n party_n1 party_n2 MARITAL_n NORTHWHO_n
## SEXATT1_n          1         1        1        1         1          1
## SEXATT2_n          1         1        1        1         1          1
## SEXATT3_n          1         1        1        1         1          1
## SEX_n              1         1        1        1         1          1
## AGE_n              1         1        1        1         1          1
## AGE_n_c            1         1        1        1         1          1
##           NORTHWHO_n2 KRPROUD_n ABORT2_n RELIG_n RELLEAD1_n RELSCI2_n RELFUN1_n
## SEXATT1_n           1         1        1       1          1         1         1
## SEXATT2_n           1         1        1       1          1         1         1
## SEXATT3_n           1         1        1       1          1         1         1
## SEX_n               1         1        1       1          1         1         1
## AGE_n               1         1        1       1          1         1         1
## AGE_n_c             1         1        1       1          1         1         1
##           RELFUN2_n RELPOWR_n RELDIFF1_n RELEXTM1_n YEAR_n RELMA_n RELFA_n
## SEXATT1_n         1         1          1          1      1       1       1
## SEXATT2_n         1         1          1          1      1       1       1
## SEXATT3_n         1         1          1          1      1       1       1
## SEX_n             1         1          1          1      1       1       1
## AGE_n             1         1          1          1      1       1       1
## AGE_n_c           1         1          1          1      1       1       1
##           RELUP_n ATTEND_n RELITEN_n PRAYFREQ_n RELACT_n RELIGOUS_n RELGSTY2_n
## SEXATT1_n       1        1         1          1        1          1          1
## SEXATT2_n       1        1         1          1        1          1          1
## SEXATT3_n       1        1         1          1        1          1          1
## SEX_n           1        1         1          1        1          1          1
## AGE_n           1        1         1          1        1          1          1
## AGE_n_c         1        1         1          1        1          1          1
##           RELGSTY3_n SPIRIT3_n REGGRP1_n REGGRP2_n REGGRP3_n REGGRP4_n
## SEXATT1_n          1         1         1         1         1         1
## SEXATT2_n          1         1         1         1         1         1
## SEXATT3_n          1         1         1         1         1         1
## SEX_n              1         1         1         1         1         1
## AGE_n              1         1         1         1         1         1
## AGE_n_c            1         1         1         1         1         1
##           REGGRP5_n REGGRP6_n REGGRP7_n REGGRP8_n REGGRP9_n REGGRP_t1_n
## SEXATT1_n         1         1         1         1         1           1
## SEXATT2_n         1         1         1         1         1           1
## SEXATT3_n         1         1         1         1         1           1
## SEX_n             1         1         1         1         1           1
## AGE_n             1         1         1         1         1           1
## AGE_n_c           1         1         1         1         1           1
##           REGGRP_t2_n SD1JP_n SD1CN_n SD1SEA_n SD1NAM_n SD1EUR_n SD2JP_n
## SEXATT1_n           1       1       1        1        1        1       1
## SEXATT2_n           1       1       1        1        1        1       1
## SEXATT3_n           1       1       1        1        1        1       1
## SEX_n               1       1       1        1        1        1       1
## AGE_n               1       1       1        1        1        1       1
## AGE_n_c             1       1       1        1        1        1       1
##           SD2CN_n SD2SEA_n SD2NAM_n SD2EUR_n SD3JP_n SD3CN_n SD3SEA_n SD3NAM_n
## SEXATT1_n       1        1        1        1       1       1        1        1
## SEXATT2_n       1        1        1        1       1       1        1        1
## SEXATT3_n       1        1        1        1       1       1        1        1
## SEX_n           1        1        1        1       1       1        1        1
## AGE_n           1        1        1        1       1       1        1        1
## AGE_n_c         1        1        1        1       1       1        1        1
##           SD3EUR_n FORNWKER_n FORNBRID_n CONTACT3_n IMPLIMI0_n SELFINT0_n
## SEXATT1_n        1          1          1          1          1          1
## SEXATT2_n        1          1          1          1          1          1
## SEXATT3_n        1          1          1          1          1          1
## SEX_n            1          1          1          1          1          1
## AGE_n            1          1          1          1          1          1
## AGE_n_c          1          1          1          1          1          1
##           FORCUL0_n SEXROLE1_n PATRACH1_n HBBYWK08_n FAMILY_n1 RELGSTY_t_n
## SEXATT1_n         1          1          1          1         1           1
## SEXATT2_n         1          1          1          1         1           1
## SEXATT3_n         1          1          1          1         1           1
## SEX_n             1          1          1          1         1           1
## AGE_n             1          1          1          1         1           1
## AGE_n_c           1          1          1          1         1           1
##           YEAR_n1
## SEXATT1_n       0
## SEXATT2_n       0
## SEXATT3_n       0
## SEX_n           0
## AGE_n           0
## AGE_n_c         0
## Number of logged events:  334 
##   it im         dep      meth                      out
## 1  0  0             collinear                  EMPLY_n
## 2  0  0             collinear                  YEAR_n1
## 3  1  1 REGGRP_t1_n       pmm              REGGRP_t2_n
## 4  1  1 REGGRP_t2_n       pmm              REGGRP_t1_n
## 5  1  1     SD1JP_n    logreg REGGRP_t1_n, REGGRP_t2_n
## 6  1  1     SD1CN_n    logreg REGGRP_t1_n, REGGRP_t2_n
KG4 <- complete(mice1) #imputed data

8. 변수 중심화하기

반드시 missing value imputation을 한 뒤에 변수 중심화 진행하기

종교성 중심화

summary(KG4$RELIGOUS_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   2.000   4.000   3.688   5.000   7.000
KG4$RELIGOUS_n1 <- KG4$RELIGOUS_n - 3.777
summary(KG4$RELIGOUS_n1)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -2.77700 -1.77700  0.22300 -0.08903  1.22300  3.22300

예배 빈도 중심화

summary(KG4$ATTEND_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   1.000   2.000   3.402   6.000   8.000
KG4$ATTEND_n1 <- KG4$ATTEND_n - 3.416
summary(KG4$ATTEND_n1)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -2.4160 -2.4160 -1.4160 -0.0137  2.5840  4.5840

가부장 중심화

summary(KG4$FAMILY_n1)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   1.000   2.000   2.309   3.000   4.000
KG4$FAMILY_n2 <- KG4$FAMILY_n1 - 2.384
summary(KG4$FAMILY_n2)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -1.3840 -1.3840 -0.3840 -0.0751  0.6160  1.6160

다른 종교 가진 사람이 친척, 가족과 결혼하는 것 허용 중심화

summary(KG4$RELDIFF1_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   1.000   2.000   1.957   2.000   4.000
KG4$RELDIFF1_n1 <- KG4$RELDIFF1_n - 1.869   
summary(KG4$RELDIFF1_n1)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -0.86900 -0.86900  0.13100  0.08769  0.13100  2.13100

얼마나 자주 기도? 중심화

summary(KG4$PRAYFREQ_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1.00    1.00    3.00    4.08    8.00   11.00
KG4$PRAYFREQ_n1 <- KG4$PRAYFREQ_n - 4.067         
summary(KG4$PRAYFREQ_n1)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -3.06700 -3.06700 -1.06700  0.01336  3.93300  6.93300

종교 모임 외 모임 빈도

summary(KG4$RELACT_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   1.000   1.000   2.916   4.000   9.000
KG4$RELACT_n1 <- KG4$RELACT_n - 3.623            
summary(KG4$RELACT_n1)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -2.6230 -2.6230 -2.6230 -0.7073  0.3770  5.3770

종교 친구 사귀는데 도움 중심화

summary(KG4$RELGSTY2_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1.00    3.00    4.00    3.64    4.00    5.00
KG4$RELGSTY2_n1 <- KG4$RELGSTY2_n - 3.642      
summary(KG4$RELGSTY2_n1)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
## -2.642000 -0.642000  0.358000 -0.001509  0.358000  1.358000

종교 어렵거나 힘들 때 위안 중심화

summary(KG4$RELGSTY3_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   4.000   4.000   3.995   5.000   5.000
KG4$RELGSTY3_n1 <- KG4$RELGSTY3_n - 4.078         
summary(KG4$RELGSTY3_n1)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -3.07800 -0.07800 -0.07800 -0.08348  0.92200  0.92200

나에겐 오직 신이 존재하기에 삶이 의미

summary(KG4$SPIRIT3_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   1.000   2.000   2.187   3.000   5.000
KG4$SPIRIT3_n1 <- KG4$SPIRIT3_n - 2.201            
summary(KG4$SPIRIT3_n1)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -1.2010 -1.2010 -0.2010 -0.0142  0.7990  2.7990

이슬람교에 대한 생각 중심화

summary(KG4$REGGRP6_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   3.000   3.000   3.486   4.000   5.000
KG4$REGGRP6_n1 <- KG4$REGGRP6_n - 3.481            
summary(KG4$REGGRP6_n1)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
## -2.481000 -0.481000 -0.481000  0.004781  0.519000  1.519000

개신교, 무교 제외 타종교에 대한 생각 중심화

summary(KG4$REGGRP_t1_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   2.714   3.000   3.102   3.429   5.000
KG4$REGGRP_t1_n1 <- KG4$REGGRP_t1_n - 3.118            
summary(KG4$REGGRP_t1_n1)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -2.1180 -0.4037 -0.1180 -0.0164  0.3106  1.8820

천주교, 불교, 무교 제외 타종교에 대한 생각 중심화

summary(KG4$REGGRP_t2_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.8333  2.5000  2.5000  2.7632  3.1667  4.1667
KG4$REGGRP_t2_n1 <- KG4$REGGRP_t2_n - 2.775            
summary(KG4$REGGRP_t2_n1)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -1.9417 -0.2750 -0.2750 -0.0118  0.3917  1.3917

외국 문화가 한국 문화 손상 중심화

summary(KG4$FORCUL0_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   3.000   4.000   4.005   5.000   7.000
KG4$FORCUL0_n1 <- KG4$FORCUL0_n - 3.808               
summary(KG4$FORCUL0_n1)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -2.8080 -0.8080  0.1920  0.1972  1.1920  3.1920

한국인 자긍심 중심화

summary(KG4$KRPROUD_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   3.000   3.000   3.151   4.000   4.000
KG4$KRPROUD_n1 <- KG4$KRPROUD_n - 3.153                  
summary(KG4$KRPROUD_n1)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
## -2.153000 -0.153000 -0.153000 -0.001943  0.847000  0.847000

종교 지도자 투표시 영향 중심화

summary(KG4$RELLEAD1_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   1.000   2.000   2.223   3.000   5.000
KG4$RELLEAD1_n1 <- KG4$RELLEAD1_n - 2.072                     
summary(KG4$RELLEAD1_n1)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -1.0720 -1.0720 -0.0720  0.1513  0.9280  2.9280

혼전섹스 중심화

summary(KG4$SEXATT1_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   2.000   2.000   2.393   3.000   4.000
KG4$SEXATT1_n1 <- KG4$SEXATT1_n - 2.392                        
summary(KG4$SEXATT1_n1)
##       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
## -1.3920000 -0.3920000 -0.3920000  0.0006428  0.6080000  1.6080000

혼외섹스 중심화

summary(KG4$SEXATT2_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   3.000   4.000   3.606   4.000   4.000
KG4$SEXATT2_n1 <- KG4$SEXATT2_n - 3.606                           
summary(KG4$SEXATT2_n1)
##       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
## -2.6060000 -0.6060000  0.3940000  0.0000527  0.3940000  0.3940000

비본질적 종교성 중심화

summary(KG4$RELGSTY_t_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   1.000   2.000   2.065   3.000   4.000
KG4$RELGSTY_t_n1 <- KG4$RELGSTY_t_n - 2.064                              
summary(KG4$RELGSTY_t_n1)
##       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
## -1.0640000 -1.0640000 -0.0640000  0.0009622  0.9360000  1.9360000

타종교 인식 합 중심화

summary(KG4$REGGRP_t1_n)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   2.714   3.000   3.102   3.429   5.000
KG4$REGGRP_t1_n1 <- KG4$REGGRP_t1_n - 3.33                              
summary(KG4$REGGRP_t1_n1)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -2.33000 -0.61571 -0.33000 -0.22840  0.09857  1.67000

9. 만들어진 최종 객체(KG4)를 csv 파일로 저장하기

write.table(KG4, file = "C:/RRR/kgss/kgss_raw_data/kgss_08_13_18_main2.csv" 
            , sep = "," 
            , row.names = FALSE)

9. 저장!

save.image("C:/RRR/kgss/kgssdata_210303.RData")