GEI Virus Analysis

The virus dataset shows the presence or absence (1/0) of 5 viruses (ABPV, BQCV, CBPV, DWV & SBV) in 621 colonies measured during Spring and Autumn in 2010 and 2011.

A summary table below showing five parameters: total number of cases, number of non-missing samples, number of negative samples, number of positive samples, percentage of positive samples (based on total) and percentage of positive samples (based on Measured).

The PPT can be thought of as the percentage of positive colonies out of total (621), while the PPA is the percentage of positive colonies out of number of colonies with data available (Measured). So, technically it is wrong to report just the PPT because most of those colonies were not measured or the data is missing.

The overall percentage of missing data is 93 %.

1. Virus Prevalence Combinations

1.1.1 Virus prevalence by Virus & Year

plot of chunk unnamed-chunk-4

1.1.2 Virus prevalence by Virus & Season

plot of chunk unnamed-chunk-5

1.1.3 Virus prevalence by Virus & Year & Season

##    Virus Year Season Total Measured Negatives Positives  PPT  PPA
## 1   ABPV 2010 Autumn   621      181       152        29  4.7 16.0
## 2   ABPV 2010 Spring   621       54        16        38  6.1 70.4
## 3   ABPV 2011 Autumn   621       30        30         0  0.0  0.0
## 4   ABPV 2011 Spring   621       36        36         0  0.0  0.0
## 5   BQCV 2010 Autumn   621       44        32        12  1.9 27.3
## 6   BQCV 2010 Spring   621       21         1        20  3.2 95.2
## 7   BQCV 2011 Autumn   621        0         0         0  0.0  NaN
## 8   BQCV 2011 Spring   621        0         0         0  0.0  NaN
## 9   CBPV 2010 Autumn   621       91        83         8  1.3  8.8
## 10  CBPV 2010 Spring   621        0         0         0  0.0  NaN
## 11  CBPV 2011 Autumn   621        0         0         0  0.0  NaN
## 12  CBPV 2011 Spring   621       35        32         3  0.5  8.6
## 13   DWV 2010 Autumn   621      180        69       111 17.9 61.7
## 14   DWV 2010 Spring   621       21        12         9  1.4 42.9
## 15   DWV 2011 Autumn   621       57        18        39  6.3 68.4
## 16   DWV 2011 Spring   621       36        13        23  3.7 63.9
## 17   SBV 2010 Autumn   621       44        32        12  1.9 27.3
## 18   SBV 2010 Spring   621       21        16         5  0.8 23.8
## 19   SBV 2011 Autumn   621        0         0         0  0.0  NaN
## 20   SBV 2011 Spring   621        0         0         0  0.0  NaN

plot of chunk unnamed-chunk-6

1.2 Virus prevalence by Virus & Genotype

This plot shows % of colonies out of number of colonies measured. Zeros are represented by the black line while the empty space represents missing data.

plot of chunk unnamed-chunk-7

1.3 Virus prevalence by Virus & Survival Status

plot of chunk unnamed-chunk-8

1.3.1 Virus prevalence by Virus & Year & Season & Survival Status

plot of chunk unnamed-chunk-9

1.4 Virus prevalence by Virus & Region

plot of chunk unnamed-chunk-10

1.4.1 Virus prevalence by Virus & Year & Season & Region

plot of chunk unnamed-chunk-11

1.5 Virus prevalence by Virus & Originbreed

plot of chunk unnamed-chunk-12

1.5.1 Virus prevalence by Virus & Year & Season & Originbreed

plot of chunk unnamed-chunk-13

1.6 Virus prevalence by Virus & Subspecies

plot of chunk unnamed-chunk-14

1.6.1 Virus prevalence by Virus & Year & Season & Subspecies

plot of chunk unnamed-chunk-15

2. Standard ANOVA

2.1 Significance values for overall factors

##                  Df Sum Sq Mean Sq F value  Pr(>F)    
## Virus             4   36.5    9.14   56.44 < 2e-16 ***
## Year              1    0.8    0.76    4.68  0.0307 *  
## Season            1    5.8    5.77   35.65 3.5e-09 ***
## Region            1    3.2    3.23   19.95 9.1e-06 ***
## Surstatus         1    0.1    0.09    0.53  0.4649    
## Originbreed       1    0.0    0.01    0.06  0.8118    
## Subspecies        4    5.9    1.48    9.13 3.2e-07 ***
## Genotype         10    4.2    0.42    2.57  0.0046 ** 
## WeatherCluster1   1    3.5    3.45   21.33 4.5e-06 ***
## WeatherCluster2   1    3.3    3.33   20.59 6.5e-06 ***
## Residuals       825  133.5    0.16                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 11569 observations deleted due to missingness

2.2 Pairwise Tukey's HSD

2.3 ANOVA Post-hoc identification

To view which is significantly different from other, we look at them seperately

## Virus by Virus
##   Virus Measured Negatives Positives PPT  PPA
## 1  ABPV      301       234        67 2.7 22.3
## 2  BQCV       65        33        32 1.3 49.2
## 3  CBPV      126       115        11 0.4  8.7
## 4   DWV      294       112       182 7.3 61.9
## 5   SBV       65        48        17 0.7 26.2
## Virus by Virus & Year
##    Virus Year Measured Negatives Positives PPT  PPA
## 1   ABPV 2010      235       168        67 5.4 28.5
## 2   ABPV 2011       66        66         0 0.0  0.0
## 3   BQCV 2010       65        33        32 2.6 49.2
## 4   BQCV 2011        0         0         0 0.0  NaN
## 5   CBPV 2010       91        83         8 0.6  8.8
## 6   CBPV 2011       35        32         3 0.2  8.6
## 7    DWV 2010      201        81       120 9.7 59.7
## 8    DWV 2011       93        31        62 5.0 66.7
## 9    SBV 2010       65        48        17 1.4 26.2
## 10   SBV 2011        0         0         0 0.0  NaN
## Virus by Virus & Season
##    Virus Season Measured Negatives Positives  PPT  PPA
## 1   ABPV Autumn      211       182        29  2.3 13.7
## 2   ABPV Spring       90        52        38  3.1 42.2
## 3   BQCV Autumn       44        32        12  1.0 27.3
## 4   BQCV Spring       21         1        20  1.6 95.2
## 5   CBPV Autumn       91        83         8  0.6  8.8
## 6   CBPV Spring       35        32         3  0.2  8.6
## 7    DWV Autumn      237        87       150 12.1 63.3
## 8    DWV Spring       57        25        32  2.6 56.1
## 9    SBV Autumn       44        32        12  1.0 27.3
## 10   SBV Spring       21        16         5  0.4 23.8
## Virus by Virus & Region
##    Virus Region Measured Negatives Positives  PPT  PPA
## 1   ABPV      1       27        13        14  1.3 51.9
## 2   ABPV      2      274       221        53  3.9 19.3
## 3   BQCV      1       26        15        11  1.0 42.3
## 4   BQCV      2       39        18        21  1.5 53.8
## 5   CBPV      1        0         0         0  0.0  NaN
## 6   CBPV      2      126       115        11  0.8  8.7
## 7    DWV      1       27         9        18  1.6 66.7
## 8    DWV      2      267       103       164 12.0 61.4
## 9    SBV      1       26        15        11  1.0 42.3
## 10   SBV      2       39        33         6  0.4 15.4
## Virus by Virus & Genotype
##    Virus Genotype Measured Negatives Positives  PPT   PPA
## 1   ABPV       01       21        17         4  2.6  19.0
## 2   ABPV       02       17        12         5  3.1  29.4
## 3   ABPV       03        4         4         0  0.0   0.0
## 4   ABPV       04       15        12         3  2.0  20.0
## 5   ABPV       05        5         3         2  2.3  40.0
## 6   ABPV       06        9         8         1  0.9  11.1
## 7   ABPV       07        0         0         0  0.0   NaN
## 8   ABPV       08       13         3        10  4.9  76.9
## 9   ABPV       09       27        23         4  2.6  14.8
## 10  ABPV       10       31        25         6  4.5  19.4
## 11  ABPV       11       11        11         0  0.0   0.0
## 12  ABPV       12       62        52        10  3.1  16.1
## 13  ABPV       13       36        27         9  4.8  25.0
## 14  ABPV       14       31        22         9  6.8  29.0
## 15  ABPV       15        7         7         0  0.0   0.0
## 16  ABPV       16       12         8         4  2.2  33.3
## 17  BQCV       01        5         5         0  0.0   0.0
## 18  BQCV       02        0         0         0  0.0   NaN
## 19  BQCV       03        4         3         1  0.6  25.0
## 20  BQCV       04        0         0         0  0.0   NaN
## 21  BQCV       05        0         0         0  0.0   NaN
## 22  BQCV       06        0         0         0  0.0   NaN
## 23  BQCV       07        0         0         0  0.0   NaN
## 24  BQCV       08       12         4         8  3.9  66.7
## 25  BQCV       09       12         0        12  7.7 100.0
## 26  BQCV       10        0         0         0  0.0   NaN
## 27  BQCV       11        0         0         0  0.0   NaN
## 28  BQCV       12        0         0         0  0.0   NaN
## 29  BQCV       13       13         5         8  4.3  61.5
## 30  BQCV       14        0         0         0  0.0   NaN
## 31  BQCV       15        7         7         0  0.0   0.0
## 32  BQCV       16       12         9         3  1.6  25.0
## 33  CBPV       01       16        14         2  1.3  12.5
## 34  CBPV       02        0         0         0  0.0   NaN
## 35  CBPV       03        0         0         0  0.0   NaN
## 36  CBPV       04       15        15         0  0.0   0.0
## 37  CBPV       05        0         0         0  0.0   NaN
## 38  CBPV       06        9         6         3  2.6  33.3
## 39  CBPV       07        0         0         0  0.0   NaN
## 40  CBPV       08        0         0         0  0.0   NaN
## 41  CBPV       09        0         0         0  0.0   NaN
## 42  CBPV       10        8         7         1  0.8  12.5
## 43  CBPV       11       11        10         1  0.8   9.1
## 44  CBPV       12       35        31         4  1.2  11.4
## 45  CBPV       13       23        23         0  0.0   0.0
## 46  CBPV       14        9         9         0  0.0   0.0
## 47  CBPV       15        0         0         0  0.0   NaN
## 48  CBPV       16        0         0         0  0.0   NaN
## 49   DWV       01       21         7        14  9.0  66.7
## 50   DWV       02       11         4         7  4.4  63.6
## 51   DWV       03        4         4         0  0.0   0.0
## 52   DWV       04       15         1        14  9.2  93.3
## 53   DWV       05        3         3         0  0.0   0.0
## 54   DWV       06        9         3         6  5.2  66.7
## 55   DWV       07        0         0         0  0.0   NaN
## 56   DWV       08       13         3        10  4.9  76.9
## 57   DWV       09       31        18        13  8.3  41.9
## 58   DWV       10       26        12        14 10.6  53.8
## 59   DWV       11       16         8         8  6.5  50.0
## 60   DWV       12       59        17        42 13.0  71.2
## 61   DWV       13       45        15        30 16.0  66.7
## 62   DWV       14       22         6        16 12.1  72.7
## 63   DWV       15        7         7         0  0.0   0.0
## 64   DWV       16       12         4         8  4.3  66.7
## 65   SBV       01        5         5         0  0.0   0.0
## 66   SBV       02        0         0         0  0.0   NaN
## 67   SBV       03        4         4         0  0.0   0.0
## 68   SBV       04        0         0         0  0.0   NaN
## 69   SBV       05        0         0         0  0.0   NaN
## 70   SBV       06        0         0         0  0.0   NaN
## 71   SBV       07        0         0         0  0.0   NaN
## 72   SBV       08       12         4         8  3.9  66.7
## 73   SBV       09       12         9         3  1.9  25.0
## 74   SBV       10        0         0         0  0.0   NaN
## 75   SBV       11        0         0         0  0.0   NaN
## 76   SBV       12        0         0         0  0.0   NaN
## 77   SBV       13       13        11         2  1.1  15.4
## 78   SBV       14        0         0         0  0.0   NaN
## 79   SBV       15        7         6         1  0.7  14.3
## 80   SBV       16       12         9         3  1.6  25.0
## Virus by Virus & Subspecies
##    Virus Subspecies Measured Negatives Positives  PPT  PPA
## 1   ABPV          1      219       177        42  3.5 19.2
## 2   ABPV          2       19        15         4  1.2 21.1
## 3   ABPV          3       14        11         3  1.2 21.4
## 4   ABPV          4       36        28         8  1.7 22.2
## 5   ABPV          5       13         3        10  4.9 76.9
## 6   BQCV          1       30        10        20  1.7 66.7
## 7   BQCV          2       19        16         3  0.9 15.8
## 8   BQCV          3        0         0         0  0.0  NaN
## 9   BQCV          4        4         3         1  0.2 25.0
## 10  BQCV          5       12         4         8  3.9 66.7
## 11  CBPV          1      102        94         8  0.7  7.8
## 12  CBPV          2        0         0         0  0.0  NaN
## 13  CBPV          3        9         6         3  1.2 33.3
## 14  CBPV          4       15        15         0  0.0  0.0
## 15  CBPV          5        0         0         0  0.0  NaN
## 16   DWV          1      220        83       137 11.3 62.3
## 17   DWV          2       19        11         8  2.4 42.1
## 18   DWV          3       12         6         6  2.3 50.0
## 19   DWV          4       30         9        21  4.4 70.0
## 20   DWV          5       13         3        10  4.9 76.9
## 21   SBV          1       30        25         5  0.4 16.7
## 22   SBV          2       19        15         4  1.2 21.1
## 23   SBV          3        0         0         0  0.0  NaN
## 24   SBV          4        4         4         0  0.0  0.0
## 25   SBV          5       12         4         8  3.9 66.7
## Virus by Virus & WeatherCluster1
##    Virus WeatherCluster1 Measured Negatives Positives  PPT  PPA
## 1   ABPV               1      284       231        53  3.8 18.7
## 2   ABPV               2       17         3        14  1.3 82.4
## 3   BQCV               1       49        26        23  1.6 46.9
## 4   BQCV               2       16         7         9  0.8 56.2
## 5   CBPV               1      126       115        11  0.8  8.7
## 6   CBPV               2        0         0         0  0.0  NaN
## 7    DWV               1      277       109       168 11.9 60.6
## 8    DWV               2       17         3        14  1.3 82.4
## 9    SBV               1       49        43         6  0.4 12.2
## 10   SBV               2       16         5        11  1.0 68.8
## Virus by Virus & WeatherCluster2
##    Virus WeatherCluster2 Measured Negatives Positives  PPT  PPA
## 1   ABPV               1       61        61         0  0.0  0.0
## 2   ABPV               2        0         0         0  0.0  NaN
## 3   ABPV               3        0         0         0  0.0  NaN
## 4   ABPV               4        0         0         0  0.0  NaN
## 5   ABPV               5       27        13        14  2.8 51.9
## 6   ABPV               6      213       160        53  5.7 24.9
## 7   BQCV               1       18        17         1  0.4  5.6
## 8   BQCV               2        0         0         0  0.0  NaN
## 9   BQCV               3        0         0         0  0.0  NaN
## 10  BQCV               4        0         0         0  0.0  NaN
## 11  BQCV               5       26        15        11  2.2 42.3
## 12  BQCV               6       21         1        20  2.1 95.2
## 13  CBPV               1       43        43         0  0.0  0.0
## 14  CBPV               2        0         0         0  0.0  NaN
## 15  CBPV               3        0         0         0  0.0  NaN
## 16  CBPV               4        0         0         0  0.0  NaN
## 17  CBPV               5        0         0         0  0.0  NaN
## 18  CBPV               6       83        72        11  1.2 13.3
## 19   DWV               1       61        22        39 14.1 63.9
## 20   DWV               2        0         0         0  0.0  NaN
## 21   DWV               3        0         0         0  0.0  NaN
## 22   DWV               4        0         0         0  0.0  NaN
## 23   DWV               5       27         9        18  3.5 66.7
## 24   DWV               6      206        81       125 13.4 60.7
## 25   SBV               1       18        17         1  0.4  5.6
## 26   SBV               2        0         0         0  0.0  NaN
## 27   SBV               3        0         0         0  0.0  NaN
## 28   SBV               4        0         0         0  0.0  NaN
## 29   SBV               5       26        15        11  2.2 42.3
## 30   SBV               6       21        16         5  0.5 23.8

3. GLM & ANOVA (Logistic Regression)

3.1 Overall

GLM model for presence or absence of virus evaluated against list of variables: virus type, year, season, region, survival status, origin breed, subspecies, genotype, weather cluster 1 and weather cluster 2.

## 
## Call:
## glm(formula = value ~ Virus + Year + Season + Region + Surstatus + 
##     Originbreed + Subspecies + Genotype + WeatherCluster1 + WeatherCluster2, 
##     family = binomial, data = v2)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.469  -0.658  -0.368   0.840   2.976  
## 
## Coefficients: (5 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -15.0356   458.9609   -0.03  0.97387    
## VirusBQCV          1.4187     0.3858    3.68  0.00024 ***
## VirusCBPV         -0.8498     0.3649   -2.33  0.01986 *  
## VirusDWV           2.3538     0.2227   10.57  < 2e-16 ***
## VirusSBV          -0.0968     0.3971   -0.24  0.80735    
## Year2011          -0.7647     0.2389   -3.20  0.00137 ** 
## SeasonSpring       1.4189     0.2416    5.87  4.3e-09 ***
## Region2           12.1261   458.9608    0.03  0.97892    
## Surstatus1         0.2668     0.2342    1.14  0.25474    
## Originbreed1       0.1881     0.2368    0.79  0.42705    
## Subspecies2       11.9513   458.9613    0.03  0.97923    
## Subspecies3        0.0139     0.6125    0.02  0.98191    
## Subspecies4        0.7965     0.5161    1.54  0.12278    
## Subspecies5       12.5679   458.9617    0.03  0.97815    
## Genotype02        -0.4463     0.6048   -0.74  0.46055    
## Genotype03        -2.0988     1.1498   -1.83  0.06794 .  
## Genotype04             NA         NA      NA       NA    
## Genotype05        -1.2019     1.0401   -1.16  0.24788    
## Genotype06             NA         NA      NA       NA    
## Genotype08             NA         NA      NA       NA    
## Genotype09        -0.9122     0.4603   -1.98  0.04750 *  
## Genotype10        -0.3879     0.4573   -0.85  0.39639    
## Genotype11        -1.0743     0.5736   -1.87  0.06110 .  
## Genotype12         0.1817     0.4020    0.45  0.65130    
## Genotype13        -0.0647     0.4107   -0.16  0.87476    
## Genotype14        -0.0254     0.4572   -0.06  0.95571    
## Genotype15       -13.8163   458.9598   -0.03  0.97598    
## Genotype16             NA         NA      NA       NA    
## WeatherCluster12   2.6594     0.6765    3.93  8.5e-05 ***
## WeatherCluster25       NA         NA      NA       NA    
## WeatherCluster26   1.2142     0.2809    4.32  1.5e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1115.12  on 850  degrees of freedom
## Residual deviance:  802.77  on 825  degrees of freedom
##   (11569 observations deleted due to missingness)
## AIC: 854.8
## 
## Number of Fisher Scoring iterations: 14
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: value
## 
## Terms added sequentially (first to last)
## 
## 
##                 Df Deviance Resid. Df Resid. Dev Pr(>Chi)    
## NULL                              850       1115             
## Virus            4    165.8       846        949  < 2e-16 ***
## Year             1      4.2       845        945   0.0413 *  
## Season           1     28.0       844        917  1.2e-07 ***
## Region           1     17.6       843        900  2.8e-05 ***
## Surstatus        1      0.5       842        899   0.4762    
## Originbreed      1      0.1       841        899   0.8196    
## Subspecies       4     32.3       837        867  1.7e-06 ***
## Genotype        10     26.2       827        841   0.0035 ** 
## WeatherCluster1  1     18.0       826        823  2.2e-05 ***
## WeatherCluster2  1     19.8       825        803  8.5e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.2 Specific Cases

## 
## Call:
## glm(formula = DWVAut10 ~ VWOct10, family = "binomial", data = v1)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.706  -0.981  -0.813   1.093   1.661  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  -1.0887     0.4097   -2.66   0.0079 **
## VWOct10       0.1519     0.0557    2.73   0.0064 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 102.369  on 73  degrees of freedom
## Residual deviance:  90.807  on 72  degrees of freedom
##   (547 observations deleted due to missingness)
## AIC: 94.81
## 
## Number of Fisher Scoring iterations: 4
##              2.5 % 97.5 %
## (Intercept) 0.1424 0.7199
## VWOct10     1.0584 1.3174
## (Intercept)     VWOct10 
##      0.3367      1.1640
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: DWVAut10
## 
## Terms added sequentially (first to last)
## 
## 
##         Df Deviance Resid. Df Resid. Dev Pr(>Chi)    
## NULL                       73      102.4             
## VWOct10  1     11.6        72       90.8  0.00067 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Call:
## glm(formula = DWVAut10 ~ NMFSpring10, family = "binomial", data = v1)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
##  -1.41   -1.32    1.03    1.04    1.04  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   0.3230     0.1802    1.79    0.073 .
## NMFSpring10   0.0301     0.1235    0.24    0.808  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 215.81  on 158  degrees of freedom
## Residual deviance: 215.75  on 157  degrees of freedom
##   (462 observations deleted due to missingness)
## AIC: 219.8
## 
## Number of Fisher Scoring iterations: 4
##              2.5 % 97.5 %
## (Intercept) 0.9721  1.974
## NMFSpring10 0.8117  1.336
## (Intercept) NMFSpring10 
##       1.381       1.031
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: DWVAut10
## 
## Terms added sequentially (first to last)
## 
## 
##             Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL                          158        216         
## NMFSpring10  1   0.0599       157        216     0.81
## 
## Call:
## glm(formula = DWVAut10 ~ ObservedDays1000, family = "binomial", 
##     data = v1)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.008  -1.233   0.758   0.936   1.281  
## 
## Coefficients:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       2.08682    0.53084    3.93  8.5e-05 ***
## ObservedDays1000 -0.00233    0.00072   -3.24   0.0012 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 239.64  on 179  degrees of freedom
## Residual deviance: 228.62  on 178  degrees of freedom
##   (441 observations deleted due to missingness)
## AIC: 232.6
## 
## Number of Fisher Scoring iterations: 4
##                   2.5 %  97.5 %
## (Intercept)      2.9254 23.5966
## ObservedDays1000 0.9962  0.9991
##      (Intercept) ObservedDays1000 
##           8.0592           0.9977
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: DWVAut10
## 
## Terms added sequentially (first to last)
## 
## 
##                  Df Deviance Resid. Df Resid. Dev Pr(>Chi)    
## NULL                               179        240             
## ObservedDays1000  1       11       178        229    9e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Call:
## glm(formula = DWVAut10 ~ Surstatus, family = "binomial", data = v1)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.445  -1.445   0.932   0.932   1.177  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -6.24e-15   3.24e-01    0.00    1.000  
## Surstatus1   6.10e-01   3.69e-01    1.65    0.098 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 239.64  on 179  degrees of freedom
## Residual deviance: 236.92  on 178  degrees of freedom
##   (441 observations deleted due to missingness)
## AIC: 240.9
## 
## Number of Fisher Scoring iterations: 4
##              2.5 % 97.5 %
## (Intercept) 0.5266  1.899
## Surstatus1  0.8906  3.811
## (Intercept)  Surstatus1 
##        1.00        1.84
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: DWVAut10
## 
## Terms added sequentially (first to last)
## 
## 
##           Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                        179        240           
## Surstatus  1     2.72       178        237    0.099 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4. Quantitative Analysis

4.1 Boxplot - Viral titres by Month

Here we see boxplots of viral titres for three viruses by months. This is taking both years into account. Months 3 and 10 were sampled in 2010 and months 4 and 9 were sampled in 2011.

plot of chunk unnamed-chunk-23

4.2 Table - Viral titres by Month

Viral titres in each colony by Virus and Month aggregated by mean.

##       Sample AKI_03 AKI_04 AKI_09 AKI_10 BQCV_03 BQCV_04 BQCV_09 BQCV_10 DWV_03 DWV_04 DWV_09 DWV_10
## 1      GR-03    1.1     NA     NA     NA    1.86      NA      NA      NA      4     NA     NA     NA
## 2      GR-06     NA   0.30    1.0    5.9      NA   3.482     0.5       2     NA      3      5      8
## 3      GR-07    0.3   3.74     NA    3.1    0.16   2.132      NA       3      3      4     NA      7
## 4      GR-08    0.0   1.15     NA    5.7    2.31   0.764      NA       2      2      6     NA      8
## 5      GR-09    0.0     NA    0.9    4.6    2.20      NA     2.0       2      3     NA      7      8
## 6      GR-10    0.0     NA     NA     NA    2.28      NA      NA      NA      3     NA     NA     NA
## 7      GR-11    0.0   0.00    1.1    0.8    0.08   1.045     1.9       3      2      6      8      7
## 8      GR-12    0.0   0.04    1.7    2.1    1.49   2.664     0.0       2      3      3      7      6
## 9      GR-13    0.0     NA     NA     NA    0.00      NA      NA      NA      7     NA     NA     NA
## 10     GR-14     NA   0.00    6.1    5.8      NA   2.767     0.6       3     NA      4      7      8
## 11     GR-15    0.0   1.04    0.9    6.0    0.45   3.922     1.2       2      3      4      7      8
## 12     GR-16    0.0   0.53    0.4    6.2    0.00   1.629     0.0       2      2      2      3      8
## 13     GR-17    0.0     NA     NA     NA    0.00      NA      NA      NA      2     NA     NA     NA
## 14     GR-18    0.2   0.00    1.1    1.8    0.00   0.000     0.0       2      3      6      5      7
## 15     GR-19    0.0     NA     NA    4.9    1.42      NA      NA       3      2     NA     NA      8
## 16     GR-20    0.0   0.00    5.7    1.9    1.44   0.247     0.0       2      3      6      5      7
## 17     GR-21    0.0     NA     NA     NA    0.18      NA      NA      NA      2     NA     NA     NA
## 18     GR-22    0.0     NA     NA    4.9    0.00      NA      NA       2      4     NA     NA      8
## 19     GR-23    0.0     NA     NA     NA    0.00      NA      NA      NA      5     NA     NA     NA
## 20     GR-24    1.2     NA     NA    5.8    1.72      NA      NA       2      3     NA     NA      7
## 21     GR-25    1.2     NA     NA     NA    0.10      NA      NA      NA      4     NA     NA     NA
## 22     GR-26    0.0     NA     NA     NA    0.00      NA      NA      NA      2     NA     NA     NA
## 23     GR-31    0.0   1.00     NA    6.7    0.00   0.000      NA       2      7      3     NA      8
## 24     GR-32    2.0     NA    0.4    0.3    0.39      NA     1.2       2      6     NA      4      7
## 25     GR-33    1.0     NA     NA    1.1    0.00      NA      NA       3      7     NA     NA      7
## 26     GR-34    0.0     NA     NA     NA    1.26      NA      NA      NA      7     NA     NA     NA
## 27     GR-35    0.8   0.37     NA    6.2    0.10   1.704      NA       3      3      7     NA      8
## 28     GR-36    0.2     NA     NA     NA    1.63      NA      NA      NA      5     NA     NA     NA
## 29     GR-37    0.4   0.00     NA    2.1    1.34   3.012      NA       2      6      6     NA      8
## 30     GR-38    0.0   0.00     NA    7.9    1.09   4.133      NA       0      6      7     NA      6
## 31 GR-38-Lim     NA     NA     NA    1.5      NA      NA      NA       2     NA     NA     NA      7
## 32     GR-39    0.0     NA     NA     NA    2.14      NA      NA      NA      7     NA     NA     NA
## 33     GR-40    0.5   0.00    2.2    5.5    0.00   0.009     1.6       2      3      3      7      8
## 34 GR-ITALIK     NA     NA     NA    2.9      NA      NA      NA       2     NA     NA     NA      7

4.3 Table - Viral titres by Month and Year

Viral titres in each colony by Virus and Month and Year.

##       Sample AKI_03_10 AKI_04_11 AKI_09_11 AKI_10_10 BQCV_03_10 BQCV_04_11 BQCV_09_11 BQCV_10_10 DWV_03_10 DWV_04_11 DWV_09_11 DWV_10_10
## 1      GR-03       1.1        NA        NA        NA       1.86         NA         NA         NA         4        NA        NA        NA
## 2      GR-06        NA      0.30       1.0       5.9         NA      3.482        0.5          2        NA         3         5         8
## 3      GR-07       0.3      3.74        NA       3.1       0.16      2.132         NA          3         3         4        NA         7
## 4      GR-08       0.0      1.15        NA       5.7       2.31      0.764         NA          2         2         6        NA         8
## 5      GR-09       0.0        NA       0.9       4.6       2.20         NA        2.0          2         3        NA         7         8
## 6      GR-10       0.0        NA        NA        NA       2.28         NA         NA         NA         3        NA        NA        NA
## 7      GR-11       0.0      0.00       1.1       0.8       0.08      1.045        1.9          3         2         6         8         7
## 8      GR-12       0.0      0.04       1.7       2.1       1.49      2.664        0.0          2         3         3         7         6
## 9      GR-13       0.0        NA        NA        NA       0.00         NA         NA         NA         7        NA        NA        NA
## 10     GR-14        NA      0.00       6.1       5.8         NA      2.767        0.6          3        NA         4         7         8
## 11     GR-15       0.0      1.04       0.9       6.0       0.45      3.922        1.2          2         3         4         7         8
## 12     GR-16       0.0      0.53       0.4       6.2       0.00      1.629        0.0          2         2         2         3         8
## 13     GR-17       0.0        NA        NA        NA       0.00         NA         NA         NA         2        NA        NA        NA
## 14     GR-18       0.2      0.00       1.1       1.8       0.00      0.000        0.0          2         3         6         5         7
## 15     GR-19       0.0        NA        NA       4.9       1.42         NA         NA          3         2        NA        NA         8
## 16     GR-20       0.0      0.00       5.7       1.9       1.44      0.247        0.0          2         3         6         5         7
## 17     GR-21       0.0        NA        NA        NA       0.18         NA         NA         NA         2        NA        NA        NA
## 18     GR-22       0.0        NA        NA       4.9       0.00         NA         NA          2         4        NA        NA         8
## 19     GR-23       0.0        NA        NA        NA       0.00         NA         NA         NA         5        NA        NA        NA
## 20     GR-24       1.2        NA        NA       5.8       1.72         NA         NA          2         3        NA        NA         7
## 21     GR-25       1.2        NA        NA        NA       0.10         NA         NA         NA         4        NA        NA        NA
## 22     GR-26       0.0        NA        NA        NA       0.00         NA         NA         NA         2        NA        NA        NA
## 23     GR-31       0.0      1.00        NA       6.7       0.00      0.000         NA          2         7         3        NA         8
## 24     GR-32       2.0        NA       0.4       0.3       0.39         NA        1.2          2         6        NA         4         7
## 25     GR-33       1.0        NA        NA       1.1       0.00         NA         NA          3         7        NA        NA         7
## 26     GR-34       0.0        NA        NA        NA       1.26         NA         NA         NA         7        NA        NA        NA
## 27     GR-35       0.8      0.37        NA       6.2       0.10      1.704         NA          3         3         7        NA         8
## 28     GR-36       0.2        NA        NA        NA       1.63         NA         NA         NA         5        NA        NA        NA
## 29     GR-37       0.4      0.00        NA       2.1       1.34      3.012         NA          2         6         6        NA         8
## 30     GR-38       0.0      0.00        NA       7.9       1.09      4.133         NA          0         6         7        NA         6
## 31 GR-38-Lim        NA        NA        NA       1.5         NA         NA         NA          2        NA        NA        NA         7
## 32     GR-39       0.0        NA        NA        NA       2.14         NA         NA         NA         7        NA        NA        NA
## 33     GR-40       0.5      0.00       2.2       5.5       0.00      0.009        1.6          2         3         3         7         8
## 34 GR-ITALIK        NA        NA        NA       2.9         NA         NA         NA          2        NA        NA        NA         7

4.4 Sick Bees

Here, we look at sick bees where viral titre is greater than 7. Positives>7 shows number of colonies where titres>7 was observed. PP7 shows the percentage of colonies where titres>7 was observed.

##    Virus Month Measured Negatives Positives Positives>7   PPA PP7   Mean     SD   Max    Min
## 1    AKI    03       30        19        11           0  36.7   0 0.2944 0.5117 1.951 0.0000
## 2    AKI    04       15         7         8           0  53.3   0 0.5452 0.9812 3.743 0.0000
## 3    AKI    09       11         0        11           0 100.0   0 1.9527 2.0203 6.145 0.3791
## 4    AKI    10       23         0        23           1 100.0   4 4.0683 2.2421 7.880 0.2533
## 5   BQCV    03       30        10        20           0  66.7   0 0.7882 0.8653 2.306 0.0000
## 6   BQCV    04       15         2        13           0  86.7   0 1.8340 1.4590 4.133 0.0000
## 7   BQCV    09       11         4         7           0  63.6   0 0.8157 0.7942 2.040 0.0000
## 8   BQCV    10       23         1        22           0  95.7   0 2.1494 0.6221 3.087 0.0000
## 9    DWV    03       30         0        30           2 100.0   7 3.9990 1.8436 7.400 1.7000
## 10   DWV    04       15         0        15           1 100.0   7 4.6447 1.6044 7.490 1.8400
## 11   DWV    09       11         0        11           6 100.0  55 6.0464 1.5871 7.500 3.4300
## 12   DWV    10       23         0        23          18 100.0  78 7.3013 0.5788 8.000 5.5600

plot of chunk unnamed-chunk-26

For AKI, we see 1 colony out of 23 has titres >7 in October. For DWV, we see a rise in colonies with titres >7. In October 78% of the colonies have titres >7.

5. Merging Quantitative to OID data

31 colonies could be linked to the OID. One colony (13) present with virus data was not in the OID database.

5.1.1 Stats

Testing if the viral load is significantly different between levels of any categorical variables such as Location, region, genotype, Subspecies, Originbreed, Survival status or weathe r cluster.

Factors Location, Region, Country and weather clusters are same, so not used.

Combined DWV (All months and years merged)

Combined DWV not significant for Survival status.

Combined DWV significant for Subspecies. Subspecies 4 (n=19) has more DWV than Subspecies 1 (n=6).

Combined DWV not significant for Originbreed.

Combined DWV significant for Genotype.Genotype 10 (n=10) has more DWV than Genotype 7 (n=6).

Combined BQCV

Combined BQCV not significant for Survival status.

Combined BQCV significant for Genotype.Genotype 10 (n=10) has more BQCV than Genotype 7 (n=6).

Combined BQCV significant for Subspecies. Subspecies 2 (n=6) has more BQCV than Subspecies 1 (n=6). Subspecies 4 (n=19) has more BQCV than Subspecies 1 (n=6).

Combined AKI

Combined AKI not significant for any variable.

AKI_04_11

Significant for Supspecies but huge amount of missing data. Subspecies 2 (n=3) had more AKI than Subspecies 4 (n=12)

BQCV_03_10

Singificant for Subspecies. Subspecies 2 (n=5) had more BQCV than Subspecies 1 (n=6). Subspecies 2 (n=5) had more BQCV than Subspecies 4 (n=18).

Significant for Genotype. Genotype 9 (n=5) had more BQCV than Genotype 7 (n=6).

DWV_03_10

Significant for Genotype. Genotype 10 (n=10) had more DWV than Genotype 7 (n=6), Genotype 9 (n=5) and Genotype 11 (n=8).

Significant for Originbreed. Originbreed 0 (n=21) had more DWV than Originbreed 1 (n=8).

5.1.2 Table - Pathogens and Season Summary

This is a summary for the 31 colonies selected where quantitaive virus data was available. Shown by Pathogen, Year and Season.

##    Pathogen Year Season Total Measured Negatives Positives  PPT   PPA    Mean      SD    Max    Min
## 1       AKI 2010 Autumn    31       21         0        21 67.7 100.0  4.2488  2.2557  7.880 0.2533
## 2       AKI 2010 Spring    31       29        18        11 35.5  37.9  0.3045  0.5177  1.951 0.0000
## 3       AKI 2011 Autumn    31       11         0        11 35.5 100.0  1.9527  2.0203  6.145 0.3791
## 4       AKI 2011 Spring    31       15         7         8 25.8  53.3  0.5452  0.9812  3.743 0.0000
## 5      BQCV 2010 Autumn    31       21         1        20 64.5  95.2  2.1860  0.6398  3.087 0.0000
## 6      BQCV 2010 Spring    31       29         9        20 64.5  69.0  0.8154  0.8675  2.306 0.0000
## 7      BQCV 2011 Autumn    31       11         4         7 22.6  63.6  0.8157  0.7942  2.040 0.0000
## 8      BQCV 2011 Spring    31       15         2        13 41.9  86.7  1.8340  1.4590  4.133 0.0000
## 9       DWV 2010 Autumn    31       21         0        21 67.7 100.0  7.3252  0.6013  8.000 5.5600
## 10      DWV 2010 Spring    31       29         0        29 93.5 100.0  3.9034  1.7990  7.400 1.7000
## 11      DWV 2011 Autumn    31       11         0        11 35.5 100.0  6.0464  1.5871  7.500 3.4300
## 12      DWV 2011 Spring    31       15         0        15 48.4 100.0  4.6447  1.6044  7.490 1.8400
## 13      NMF 2010 Spring    31        0         0         0  0.0   NaN     NaN      NA   -Inf    Inf
## 14      Nos 2010 Autumn    31       21         3        18 58.1  85.7  1.3333  0.9129  3.000 0.0000
## 15      Nos 2010 Spring    31       31        16        15 48.4  48.4  1.8387  4.0914 17.000 0.0000
## 16      Nos 2010 Summer    31       28        24         4 12.9  14.3  0.1429  0.3563  1.000 0.0000
## 17      Nos 2011 Autumn    31       11         7         4 12.9  36.4  2.7273  7.1567 24.000 0.0000
## 18      Nos 2011 Spring    31       13         5         8 25.8  61.5  6.8462 15.1154 55.000 0.0000
## 19      Nos 2011 Summer    31       11        11         0  0.0   0.0  0.0000  0.0000  0.000 0.0000
## 20       VW 2009 Autumn    31       31         5        26 83.9  83.9  2.0968  1.9036  7.000 0.0000
## 21       VW 2010 Autumn    93       59         4        55 59.1  93.2  5.5254  5.5191 29.000 0.0000
## 22       VW 2010 Summer    93       57         2        55 59.1  96.5  4.1930  3.6618 19.000 0.0000
## 23       VW 2011 Autumn    62       21         1        20 32.3  95.2 11.1905  9.9630 45.000 0.0000
## 24       VW 2011 Summer    93       33        17        16 17.2  48.5  0.5455  0.6170  2.000 0.0000

5.2 Correlations

Since VWJuly10, NMFSpring10 and WI12 are completely missing, we remove them to do some correlations. NosSum11 was removed due to lack of useful data.

Here we see a heatmap based on the R2 values between variables. The large value on the figure represents R2 values while small values represent P values. Only P values <0.05 are shown in figure.The upper and lower triangles in the table are repeated values, therefore only one of the triangles are necessary. The diagonal can be ignored too.

plot of chunk unnamed-chunk-30

5.2.1 Table showing all correlating variables

From the above figure, here is a table of only those variable with significant correlation.

##             X                Y      R2      PVal
## 1    NosSpr10         VWJune10  0.3720 4.693e-02
## 2     VWAut09         VWJune10  0.5123 4.490e-03
## 3    NosAut10          VWSep10  0.4895 2.430e-02
## 4    NosAut10          VWNov10 -0.6844 9.861e-03
## 5    NosSpr11          VWNov10  0.6619 1.372e-02
## 6    NosAut10         VWJune11 -0.7458 8.408e-03
## 7     VWNov10         VWJune11  1.0000 0.000e+00
## 8    NosAut11          VWSep11  0.9424 1.418e-05
## 9     VWNov10          VWOct11  0.6506 4.163e-02
## 10   VWJune11          VWOct11  0.6506 4.163e-02
## 11    VWAug11          VWOct11  0.7873 6.868e-03
## 12   NosSpr11 ObservedDays1000 -0.7454 3.450e-03
## 13   NosAut11 ObservedDays1000 -0.8848 2.957e-04
## 14    VWAut09 ObservedDays1000 -0.4019 2.502e-02
## 15    VWSep10 ObservedDays1000 -0.4021 4.631e-02
## 16    VWOct10 ObservedDays1000 -0.5438 1.083e-02
## 17    VWNov10 ObservedDays1000 -0.5894 3.401e-02
## 18    VWSep11 ObservedDays1000 -0.8745 4.279e-04
## 19   NosSum10             WI11  0.6946 1.770e-02
## 20   NosAut10        AKI_03_10  0.5565 1.334e-02
## 21   NosAut11        AKI_03_10  0.6712 4.776e-02
## 22    VWSep11        AKI_03_10  0.6885 4.029e-02
## 23   NosSum10        AKI_04_11  0.5533 3.238e-02
## 24    VWNov10        AKI_04_11  0.6439 1.755e-02
## 25    VWAug10        AKI_10_10  0.4351 4.870e-02
## 26   NosSpr11       BQCV_03_10  0.6790 2.159e-02
## 27   VWJune11       BQCV_03_10  0.7128 3.113e-02
## 28    VWAut09       BQCV_04_11  0.5430 3.647e-02
## 29    VWSep10       BQCV_09_11  0.6095 4.650e-02
## 30       WI11       BQCV_09_11  0.8457 4.073e-03
## 31    VWAut09       BQCV_10_10 -0.4797 2.776e-02
## 32    VWAut09        DWV_03_10  0.6408 1.804e-04
## 33    VWAug11        DWV_03_10  0.9660 2.305e-05
## 34    VWOct11        DWV_03_10  0.9641 1.121e-04
## 35 BQCV_10_10        DWV_03_10 -0.4733 4.068e-02
## 36    VWOct10        DWV_04_11  0.6621 7.171e-03
## 37   VWJuly11        DWV_04_11  0.6075 4.741e-02
## 38       WI11        DWV_09_11  0.6942 3.800e-02
## 39    VWAug10        DWV_10_10  0.4593 3.622e-02
## 40 BQCV_10_10        DWV_10_10  0.5871 5.139e-03

5.2.2 Table showing selected correlating variables

From the previous table, we select only the cases with R2 values greater than 0.6. And we must find out how many observations exist for variable (Xn and Yn). Yes, we find correlation with good R2 value and P values, but with such low n values, are they meaningful?

##           X                Y      R2      PVal Xn Yn
## 1  NosAut10          VWNov10 -0.6844 9.861e-03 21 13
## 2  NosSpr11          VWNov10  0.6619 1.372e-02 13 13
## 3  NosAut10         VWJune11 -0.7458 8.408e-03 21 11
## 4   VWNov10         VWJune11  1.0000 0.000e+00 13 11
## 5  NosAut11          VWSep11  0.9424 1.418e-05 11 11
## 6   VWNov10          VWOct11  0.6506 4.163e-02 13 10
## 7  VWJune11          VWOct11  0.6506 4.163e-02 11 10
## 8   VWAug11          VWOct11  0.7873 6.868e-03 11 10
## 9  NosSpr11 ObservedDays1000 -0.7454 3.450e-03 13 31
## 10 NosAut11 ObservedDays1000 -0.8848 2.957e-04 11 31
## 11  VWSep11 ObservedDays1000 -0.8745 4.279e-04 11 31
## 12 NosSum10             WI11  0.6946 1.770e-02 28 11
## 13 NosAut11        AKI_03_10  0.6712 4.776e-02 11 29
## 14  VWSep11        AKI_03_10  0.6885 4.029e-02 11 29
## 15  VWNov10        AKI_04_11  0.6439 1.755e-02 13 15
## 16 NosSpr11       BQCV_03_10  0.6790 2.159e-02 13 29
## 17 VWJune11       BQCV_03_10  0.7128 3.113e-02 11 29
## 18  VWSep10       BQCV_09_11  0.6095 4.650e-02 25 11
## 19     WI11       BQCV_09_11  0.8457 4.073e-03 11 11
## 20  VWAut09        DWV_03_10  0.6408 1.804e-04 31 29
## 21  VWAug11        DWV_03_10  0.9660 2.305e-05 11 29
## 22  VWOct11        DWV_03_10  0.9641 1.121e-04 10 29
## 23  VWOct10        DWV_04_11  0.6621 7.171e-03 21 15
## 24 VWJuly11        DWV_04_11  0.6075 4.741e-02 11 15
## 25     WI11        DWV_09_11  0.6942 3.800e-02 11 11

6. Varroa Growth Rate

Varroa growth rate is the ratio of NMF in Spring to VW at the end of season. Since we have VW from Sep, Oct and Nov, I made 3 VGRs. And an extra VGR combining Oct and Nov by taking their mean.

VGR equation in use is of the format VGR=10*log(1+147.41*((1+10*(v1$VWSep10))/(1+5*(v1$NMFSpring10)))) where log is natural log.

6.1 VGR Monthwise Barplots

Here we see VGR for all colonies by month. Empty areas are missing data NA.

plot of chunk unnamed-chunk-33 plot of chunk unnamed-chunk-33 plot of chunk unnamed-chunk-33 plot of chunk unnamed-chunk-33

6.2 VGR Histograms

If we look at the histograms for VGR. We find that Sep & Oct have sort of normal distributions. Nov has a very strong negative skew. and thereby the Oct-Nov combined have a negative skew.

plot of chunk unnamed-chunk-34 plot of chunk unnamed-chunk-34

6.3 VGR Stats

Significant variables for VGR (using VGROct) and pairwise significant levels based on ANOVA & Tukey's HSD

Location (too many to mention specifically)

Country (9-1, 9-2, 6-3, 7-3, 9-3, 9-6, 9-7)

Genotype (16-11, 8-11, 3-14, 3-16, 6-3, 8-3)

Subspecies (5-1, 4-2, 5-4)

WeatherCluster2 (5-2, 6-2, 5-3)

Not significant for Region, BroodRemoval2010, BroodRemoval2011, Originbreed, Survival status, WeatherCluster1

## The End