To begin, let’s assume n=100, so X1, X2,…X100.
Second, let,s assume uniform distribution is 1 to k where k = 5.
Let’s simulate 10000 times and display the distribution of rv Y=min(X1, X2,….,X100)
library(ggplot2)
# Suppose n =100 Xn
# Suppose k = 5 so unif 1<x<5
#Generate Xn
xr<-runif(100,1,5)
hist(runif(100,1,5))
hist(xr)
class(xr)
## [1] "numeric"
xdf<-as.data.frame(xr)
class(xdf)
## [1] "data.frame"
head(xdf)
## xr
## 1 3.768435
## 2 1.578844
## 3 1.736286
## 4 1.551793
## 5 4.768493
## 6 4.421947
Y1<-vector()
for (i in 1:10000)
{xr<-runif(100,1,5)
Y=min(xr)
Y1=rbind(Y1,Y)}
hist(Y1)
Here, you can see the minimum approaches 1.
#Geometric distribution model
#p=.1
p=.1
#prob(X>8)
1-pgeom(8,.1)
## [1] 0.3874205
#E(X)
1/p
## [1] 10
#Var(x)
(1-p)/(p^2)
## [1] 90
B<-10
1-pexp(.1,10)
## [1] 0.3678794
#E(X)
B
## [1] 10
#Var(x)
B^2
## [1] 100
dbinom(0,8,.1)
## [1] 0.4304672
n<-10
p<-.1
#E(X)
n*p
## [1] 1
#Var(X)
n*p*(1-p)
## [1] 0.9
lambda<-10*.1
ppois(.8,1)
## [1] 0.3678794
#E(x)
lambda
## [1] 1
#Var(x)
lambda
## [1] 1