library(tidyverse)
library(forcats)
library(bibliometrix)
library(igraph)
WoS
https://images.webofknowledge.com/images/help/WOS/hs_wos_fieldtags.html
wos <-
convert2df("wos.txt")
Converting your wos collection into a bibliographic dataframe
Done!
Generating affiliation field tag AU_UN from C1: Done!
Scopus
scopus <-
convert2df("scopus.bib",
dbsource = "scopus",
format = "bibtex")
scopus %>% dim()
[1] 523 38
scopus %>% names()
[1] "AU" "DE" "ID" "C1" "CR" "JI" "AB"
[8] "PA" "AR" "chemicals_cas" "coden" "RP" "DT" "DI"
[15] "BE" "FU" "BN" "SN" "SO" "LA" "TC"
[22] "PN" "page_count" "PP" "PU" "PM" "DB" "sponsors"
[29] "TI" "url" "VL" "PY" "FX" "AU_UN" "AU1_UN"
[36] "AU_UN_NR" "SR_FULL" "SR"
Vamos a analizar AU
Creamos una tabla de autores
autores <-
scopus %>%
select(AU)
autores %>%
dim()
[1] 523 1
¿Realmente cuántos investigadores hay?
autores %>% dim()
[1] 1183 1
Quitamos el NA NA
autores <-
autores %>%
filter(!(str_detect(string = AU,
pattern = "NA NA" )))
Cómo se verÃa en un diagrama de barras?
Qué tal un diagrama circular?
autores %>%
count(AU, sort = TRUE) %>%
slice(1:10) %>%
mutate(AU = forcats::fct_reorder(AU, n)) %>%
ggplot(aes(x = "", y = n, fill = AU)) +
geom_bar(with = 1, stat = "identity")
Ignoring unknown parameters: with
ahora si..
autores %>%
count(AU, sort = TRUE) %>%
slice(1:10) %>%
mutate(AU = forcats::fct_reorder(AU, n)) %>%
ggplot(aes(x = "", y = n, fill = AU)) +
geom_bar(with = 1, stat = "identity") +
coord_polar("y", start = 0)
Ignoring unknown parameters: with
scopus %>% names()
[1] "AU" "DE" "ID" "C1" "CR" "JI" "AB"
[8] "PA" "AR" "chemicals_cas" "coden" "RP" "DT" "DI"
[15] "BE" "FU" "BN" "SN" "SO" "LA" "TC"
[22] "PN" "page_count" "PP" "PU" "PM" "DB" "sponsors"
[29] "TI" "url" "VL" "PY" "FX" "AU_UN" "AU1_UN"
[36] "AU_UN_NR" "SR_FULL" "SR"