- Look at the p-values as well as the significance codes
- If the p-value is less than the significance levels, we can conclude that there are significant differences between the groups
anova <- aov(math.score ~ parental.level.of.education + lunch + gender +
race.ethnicity, data = dfstuper)
print(summary(anova))
## Df Sum Sq Mean Sq F value Pr(>F)
## parental.level.of.education 5 7296 1459 8.099 1.68e-07 ***
## lunch 1 28724 28724 159.434 < 2e-16 ***
## gender 1 6601 6601 36.640 2.01e-09 ***
## race.ethnicity 4 9070 2268 12.586 5.42e-10 ***
## Residuals 988 177998 180
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1