library(ISLR)
## Warning: package 'ISLR' was built under R version 3.6.3
library(boot)
#(A.)
set.seed(1)
deltas <- rep(NA, 10)
for (i in 1:10) {
fit <- glm(wage ~ poly(age, i), data = Wage)
deltas[i] <- cv.glm(Wage, fit, K = 10)$delta[1]
}
plot(1:10, deltas, xlab = "Degree", ylab = "CV-Error", type = "l")
d.min <- which.min(deltas)
points(which.min(deltas), deltas[which.min(deltas)], col = "red", cex = 2, pch = 20)

#The cv-plot show that d=4, is the smallest degree giving reasonably small cross-validation error.
fit1 <- lm(wage ~ age, data = Wage)
fit2 <- lm(wage ~ poly(age, 2), data = Wage)
fit3 <- lm(wage ~ poly(age, 3), data = Wage)
fit4 <- lm(wage ~ poly(age, 4), data = Wage)
fit5 <- lm(wage ~ poly(age, 5), data = Wage)
anova(fit1, fit2, fit3, fit4, fit5)
## Analysis of Variance Table
##
## Model 1: wage ~ age
## Model 2: wage ~ poly(age, 2)
## Model 3: wage ~ poly(age, 3)
## Model 4: wage ~ poly(age, 4)
## Model 5: wage ~ poly(age, 5)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2998 5022216
## 2 2997 4793430 1 228786 143.5931 < 2.2e-16 ***
## 3 2996 4777674 1 15756 9.8888 0.001679 **
## 4 2995 4771604 1 6070 3.8098 0.051046 .
## 5 2994 4770322 1 1283 0.8050 0.369682
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Anova shows that all polynomials above degree 4 are insignificant.
plot(wage ~ age, data = Wage, col = "darkgrey")
agelims <- range(Wage$age)
age.grid <- seq(from = agelims[1], to = agelims[2])
fit <- lm(wage ~ poly(age, 3), data = Wage)
preds <- predict(fit, newdata = list(age = age.grid))
lines(age.grid, preds, col = "red", lwd = 2)

#(B.)
cvs <- rep(NA, 10)
for (i in 2:10) {
Wage$age.cut <- cut(Wage$age, i)
fit <- glm(wage ~ age.cut, data = Wage)
cvs[i] <- cv.glm(Wage, fit, K = 10)$delta[1]
}
plot(2:10, cvs[-1], xlab = "Cuts", ylab = "Test MSE", type = "l")
d.min <- which.min(cvs)
points(which.min(cvs), cvs[which.min(cvs)], col = "red", cex = 2, pch = 20)

#The cv-plot shows that test error is minimum for k=8 cuts.
plot(wage ~ age, data = Wage, col = "darkgrey")
agelims <- range(Wage$age)
age.grid <- seq(from = agelims[1], to = agelims[2])
fit <- glm(wage ~ cut(age, 8), data = Wage)
preds <- predict(fit, data.frame(age = age.grid))
lines(age.grid, preds, col = "red", lwd = 2)

library(ISLR)
library(leaps)
## Warning: package 'leaps' was built under R version 3.6.3
set.seed(1)
attach(College)
train = sample(length(Outstate), length(Outstate)/2)
test = -train
College.train = College[train, ]
College.test = College[test, ]
reg.fit = regsubsets(Outstate ~ ., data = College.train, nvmax = 17, method = "forward")
reg.summary = summary(reg.fit)
par(mfrow = c(1, 3))
#CP Model
plot(reg.summary$cp, xlab = "Number of Variables", ylab = "Cp", type = "l")
min.cp = min(reg.summary$cp)
std.cp = sd(reg.summary$cp)
#BIC Model
plot(reg.summary$bic, xlab = "Number of Variables", ylab = "BIC", type = "l")
min.bic = min(reg.summary$bic)
std.bic = sd(reg.summary$bic)
#Adjusted R^2 Model
plot(reg.summary$adjr2, xlab = "Number of Variables", ylab = "Adjusted R2",
type = "l", ylim = c(0.4, 0.84))

max.adjr2 = max(reg.summary$adjr2)
std.adjr2 = sd(reg.summary$adjr2)
reg.fit = regsubsets(Outstate ~ ., data = College, method = "forward")
coefi = coef(reg.fit, id = 6)
names(coefi)
## [1] "(Intercept)" "PrivateYes" "Room.Board" "PhD" "perc.alumni"
## [6] "Expend" "Grad.Rate"
#(B.)
library(gam)
## Warning: package 'gam' was built under R version 3.6.3
## Loading required package: splines
## Loading required package: foreach
## Warning: package 'foreach' was built under R version 3.6.3
## Loaded gam 1.16.1
gam.fit = gam(Outstate ~ Private + s(Room.Board, df = 2) + s(PhD, df = 2) +
s(perc.alumni, df = 2) + s(Expend, df = 5) + s(Grad.Rate, df = 2), data = College.train)
## Warning in model.matrix.default(mt, mf, contrasts): non-list contrasts argument
## ignored
par(mfrow = c(2, 3))
plot(gam.fit, se = T, col = "blue")

#(C.)
gam.pred = predict(gam.fit, College.test)
gam.err = mean((College.test$Outstate - gam.pred)^2)
gam.err
## [1] 3349290
gam.tss = mean((College.test$Outstate - mean(College.test$Outstate))^2)
test.rss = 1 - gam.err / gam.tss
test.rss
## [1] 0.7660016
#We obtained a test R-squared of 0.77 using GAM with 6 predictors. This is a smallimprovement over a test RSS of 0.74 obtained using OLS.
#(D.)
summary(gam.fit)
##
## Call: gam(formula = Outstate ~ Private + s(Room.Board, df = 2) + s(PhD,
## df = 2) + s(perc.alumni, df = 2) + s(Expend, df = 5) + s(Grad.Rate,
## df = 2), data = College.train)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7402.89 -1114.45 -12.67 1282.69 7470.60
##
## (Dispersion Parameter for gaussian family taken to be 3711182)
##
## Null Deviance: 6989966760 on 387 degrees of freedom
## Residual Deviance: 1384271126 on 373 degrees of freedom
## AIC: 6987.021
##
## Number of Local Scoring Iterations: 2
##
## Anova for Parametric Effects
## Df Sum Sq Mean Sq F value Pr(>F)
## Private 1 1778718277 1778718277 479.286 < 2.2e-16 ***
## s(Room.Board, df = 2) 1 1577115244 1577115244 424.963 < 2.2e-16 ***
## s(PhD, df = 2) 1 322431195 322431195 86.881 < 2.2e-16 ***
## s(perc.alumni, df = 2) 1 336869281 336869281 90.771 < 2.2e-16 ***
## s(Expend, df = 5) 1 530538753 530538753 142.957 < 2.2e-16 ***
## s(Grad.Rate, df = 2) 1 86504998 86504998 23.309 2.016e-06 ***
## Residuals 373 1384271126 3711182
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
## Npar Df Npar F Pr(F)
## (Intercept)
## Private
## s(Room.Board, df = 2) 1 1.9157 0.1672
## s(PhD, df = 2) 1 0.9699 0.3253
## s(perc.alumni, df = 2) 1 0.1859 0.6666
## s(Expend, df = 5) 4 20.5075 2.665e-15 ***
## s(Grad.Rate, df = 2) 1 0.5702 0.4506
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Non-parametric Anova test shows a strong evidence of non-linear relationship between response and Expend, and a moderately strong non-linear relationship between response and Grad.Rate or PhD.