Problems with gsspsth fits

Here is an example of some odour responses in a third order olfactory neuron of the lateral horn in Drosophila. These neurons characteristically have very low firing rates nad this seems to cause problems for gsspsth fits.

library(STAR)
## Loading required package: survival Loading required package: splines
## Loading required package: mgcv This is mgcv 1.7-24. For overview type
## 'help("mgcv-package")'. Loading required package: R2HTML Loading required
## package: gss Loading required package: codetools
nm20120417c0.cva <- structure(list(`000,012` = structure(c(2.19068, 2.20748, 
    2.212268, 2.227044, 2.234399, 2.277808, 2.28778, 2.29497, 2.3016, 2.308512, 
    2.312805, 2.316988, 2.321962, 2.329034, 2.333688, 2.340141, 2.353747, 2.369632, 
    2.378464, 2.439431, 2.518455, 2.603159, 2.614557, 2.705988, 2.743434), class = "spikeTrain"), 
    `001,013` = structure(c(2.196917, 2.211468, 2.216432, 2.223475, 2.237023, 
        2.252737, 2.264843, 2.277121, 2.288784, 2.295067, 2.299166, 2.303518, 
        2.30712, 2.313925, 2.320784, 2.32454, 2.329489, 2.337664, 2.348424, 
        2.358128, 2.363244, 2.409266, 2.429863, 2.439307, 2.541476, 2.550149, 
        2.596942, 2.619011, 2.64598, 2.719214), class = "spikeTrain"), `002,014` = structure(c(1.201395, 
        2.183064, 2.198168, 2.202071, 2.205038, 2.211621, 2.217515, 2.22945, 
        2.236352, 2.240903, 2.24434, 2.248168, 2.251862, 2.256247, 2.261945, 
        2.272443, 2.278155, 2.292951, 2.30319, 2.322191, 2.326327, 2.333968, 
        2.340194, 2.34655, 2.351887, 2.399232, 2.412688, 2.432396, 2.441097, 
        2.452774, 2.519783, 2.53405, 2.591875, 2.785669), class = "spikeTrain"), 
    `003,015` = structure(c(2.182643, 2.189259, 2.198418, 2.207146, 2.219206, 
        2.227966, 2.24022, 2.250073, 2.25772, 2.265621, 2.273093, 2.282954, 
        2.297303, 2.302957, 2.310236, 2.318401, 2.326669, 2.332343, 2.351787, 
        2.37082, 2.38881, 2.436427, 2.529228, 2.539664, 2.606096), class = "spikeTrain"), 
    `004,016` = structure(c(2.176813, 2.206021, 2.209781, 2.255306, 2.268832, 
        2.323749, 2.353434, 2.368411, 2.38001, 2.391118, 2.41689, 2.53676, 2.552157, 
        2.570615, 2.612768, 2.621194, 2.630842), class = "spikeTrain"), `005,017` = structure(c(0.4418666, 
        0.456278, 0.4729269, 2.191657, 2.200449, 2.206611, 2.268176, 2.278493, 
        2.28476, 2.289699, 2.303996, 2.321989, 2.326882, 2.337897, 2.348311, 
        2.35306, 2.359375, 2.36909, 2.382482, 2.392311, 2.40604, 2.417058, 2.43668, 
        2.512502, 2.605908, 2.63586), class = "spikeTrain"), `006,018` = structure(c(2.172142, 
        2.177907, 2.189721, 2.207844, 2.25538, 2.306716, 2.316506, 2.323562, 
        2.330398, 2.33877, 2.349139, 2.362232, 2.387785, 2.40601, 2.430764, 
        2.43977, 2.510609, 2.523474, 2.529929, 2.723758), class = "spikeTrain"), 
    `007,019` = structure(c(0.4205255, 0.9596354, 1.875379, 1.887764, 2.183146, 
        2.227368, 2.23459, 2.283189, 2.303041, 2.310777, 2.323619, 2.329379, 
        2.337544, 2.353328, 2.3659, 2.380256, 2.387914, 2.397804, 2.405981, 
        2.41489, 2.421491, 2.433365, 2.47034, 2.551143, 2.570856, 2.625573), 
        class = "spikeTrain"), `008,020` = structure(c(0.6685078, 2.181917, 
        2.18541, 2.192812, 2.199303, 2.205553, 2.274557, 2.292576, 2.300207, 
        2.306189, 2.311826, 2.339496, 2.346417, 2.359133, 2.381038, 2.414331, 
        2.447069, 2.48456, 2.513449, 2.532036, 2.554532, 2.611548, 2.630517, 
        2.696138), class = "spikeTrain"), `009,` = structure(c(2.179295, 2.188524, 
        2.20054, 2.216639, 2.271087, 2.277406, 2.291938, 2.30193, 2.34261, 2.358553, 
        2.378289, 2.390262, 2.397128, 2.417453, 2.423637, 2.429427, 2.437522, 
        2.481788, 2.495423, 2.51361, 2.527025, 2.576037, 2.616137, 4.398371), 
        class = "spikeTrain"), `010,` = structure(c(2.17885, 2.193177, 2.22367, 
        2.292577, 2.303724, 2.309709, 2.316379, 2.322322, 2.348012, 2.366892, 
        2.374417, 2.386984, 2.407081, 2.437022, 2.482357, 2.499002, 2.532663, 
        2.538548, 2.548279, 2.575506, 2.624544, 2.639434, 2.662369, 2.701885, 
        4.040868), class = "spikeTrain"), `011,` = structure(c(1.257857, 2.180423, 
        2.188769, 2.20699, 2.212157, 2.236378, 2.270886, 2.277051, 2.287417, 
        2.303903, 2.308452, 2.313619, 2.387684, 2.405775, 2.414296, 2.465897, 
        4.404437), class = "spikeTrain"), `021,` = structure(c(2.187966, 2.192191, 
        2.198502, 2.209586, 2.220646, 2.247146, 2.250718, 2.258108, 2.384543, 
        2.388957, 2.40716, 2.423307, 2.439136, 2.452296, 2.473996, 2.488732, 
        2.50684, 2.524292, 2.532491, 2.566584, 2.603602, 2.61127, 2.622128, 
        2.746843, 4.520733), class = "spikeTrain"), `022,` = structure(c(2.173362, 
        2.1815, 2.186747, 2.191166, 2.194694, 2.205797, 2.210109, 2.22032, 2.260011, 
        2.288484, 2.368473, 2.442161, 2.465554, 2.502976, 2.629536, 2.659874, 
        2.667476, 2.706875), class = "spikeTrain"), `023,` = structure(c(1.851478, 
        2.170346, 2.176164, 2.187194, 2.193147, 2.20182, 2.244295, 2.307021, 
        2.348275, 2.359789, 2.365873, 2.372408, 2.395304, 2.406973, 2.473979, 
        2.484886, 2.537702, 2.568881, 2.594727, 2.626277, 2.655936, 2.699817), 
        class = "spikeTrain"), `024,` = structure(c(2.17883, 2.184862, 2.189812, 
        2.202566, 2.220478, 2.232048, 2.309364, 2.348311, 2.357269, 2.375263, 
        2.388871, 2.399534, 2.40601, 2.41158, 2.426504, 2.444799, 2.467842, 
        2.528073, 2.781859), class = "spikeTrain"), `025,` = structure(c(2.175375, 
        2.184777, 2.189952, 2.199346, 2.259734, 2.273937, 2.280496, 2.303905, 
        2.317071, 2.328428, 2.332939, 2.340966, 2.369571, 2.376654, 2.381634, 
        2.398848, 2.406332, 2.424256, 2.429847, 2.448975, 2.492257, 2.514055, 
        2.535387, 2.544254, 2.589578, 2.642255, 2.657324, 2.680855), class = "spikeTrain"), 
    `026,` = structure(c(0.9753571, 2.057242, 2.18671, 2.199802, 2.204997, 2.217287, 
        2.282399, 2.379315, 2.38972, 2.405036, 2.434593, 2.461064, 2.481891, 
        2.487256, 2.495272, 2.502003, 2.509588, 2.517258, 2.557129, 2.570356, 
        2.583475, 2.621413, 2.66691, 2.676865), class = "spikeTrain"), `027,` = structure(c(2.180658, 
        2.18866, 2.196765, 2.207852, 2.221037, 2.31316, 2.329037, 2.458239, 
        2.538064, 2.55249, 2.561641, 2.57703, 2.628936), class = "spikeTrain"), 
    `028,` = structure(c(0.04252608, 0.0758867, 0.1253132, 0.1854935, 2.18019, 
        2.186404, 2.192495, 2.238998, 2.275316, 2.451922, 2.492733, 2.497793, 
        2.523847, 2.555604, 2.612848, 2.775251), class = "spikeTrain"), `029,` = structure(c(1.699487, 
        1.70924, 1.739559, 2.176829, 2.186245, 2.196906, 2.205496, 2.282294, 
        2.293533, 2.302632, 2.330467, 2.356663, 2.371243, 2.536784, 2.553177, 
        2.57907, 2.65824), class = "spikeTrain"), `030,` = structure(c(1.571035, 
        1.584337, 1.613252, 2.058638, 2.165731, 2.174094, 2.179246, 2.188258, 
        2.213051, 2.253957, 2.328521, 2.385024, 2.435716, 2.579193, 2.595691, 
        4.150908, 4.15987), class = "spikeTrain"), `031,` = structure(c(0.8603197, 
        1.263854, 1.545991, 1.567027, 2.052071, 2.056553, 2.065752, 2.173351, 
        2.179399, 2.215504, 2.277463, 2.297189, 2.312775, 2.335697, 2.342934, 
        2.375062, 2.423129, 2.518255, 2.533619, 2.571689, 2.57739, 4.934412), 
        class = "spikeTrain"), `032,` = structure(c(0.1042291, 0.3838191, 0.3918235, 
        0.4582209, 0.4723376, 0.4894269, 0.5198291, 1.715563, 2.177519, 2.187716, 
        2.200552, 2.414081, 2.444661, 2.478052, 2.48911, 2.492787, 2.5038, 2.514206, 
        2.52035, 2.544385, 2.56272, 2.592551, 2.598697, 2.619046, 2.657485, 
        2.955926), class = "spikeTrain")), .Names = c("000,012", "001,013", 
    "002,014", "003,015", "004,016", "005,017", "006,018", "007,019", "008,020", 
    "009,", "010,", "011,", "021,", "022,", "023,", "024,", "025,", "026,", 
    "027,", "028,", "029,", "030,", "031,", "032,"), class = "repeatedTrain")
# raster
plot(nm20120417c0.cva)

plot of chunk unnamed-chunk-2

cva_fit = gsspsth(nm20120417c0.cva)
## Warning: the matrix is either rank-deficient or indefinite Warning: the
## matrix is either rank-deficient or indefinite Warning: the matrix is
## either rank-deficient or indefinite Warning: the matrix is either
## rank-deficient or indefinite Warning: the matrix is either rank-deficient
## or indefinite Warning: the matrix is either rank-deficient or indefinite
## Warning: the matrix is either rank-deficient or indefinite Warning: the
## matrix is either rank-deficient or indefinite Warning: the matrix is
## either rank-deficient or indefinite Warning: the matrix is either
## rank-deficient or indefinite Warning: the matrix is either rank-deficient
## or indefinite Warning: the matrix is either rank-deficient or indefinite
## Warning: the matrix is either rank-deficient or indefinite Warning: the
## matrix is either rank-deficient or indefinite Warning: the matrix is
## either rank-deficient or indefinite Warning: the matrix is either
## rank-deficient or indefinite Warning: the matrix is either rank-deficient
## or indefinite Warning: the matrix is either rank-deficient or indefinite
## Warning: the matrix is either rank-deficient or indefinite Warning: the
## matrix is either rank-deficient or indefinite Warning: the matrix is
## either rank-deficient or indefinite Warning: the matrix is either
## rank-deficient or indefinite Warning: the matrix is either rank-deficient
## or indefinite Warning: the matrix is either rank-deficient or indefinite
## Warning: the matrix is either rank-deficient or indefinite Warning: the
## matrix is either rank-deficient or indefinite Warning: the matrix is
## either rank-deficient or indefinite Warning: the matrix is either
## rank-deficient or indefinite Warning: the matrix is either rank-deficient
## or indefinite Warning: the matrix is either rank-deficient or indefinite
## Warning: the matrix is either rank-deficient or indefinite Warning: the
## matrix is either rank-deficient or indefinite Warning: the matrix is
## either rank-deficient or indefinite Warning: the matrix is either
## rank-deficient or indefinite Warning: the matrix is either rank-deficient
## or indefinite Warning: the matrix is either rank-deficient or indefinite
## Warning: the matrix is either rank-deficient or indefinite Warning: the
## matrix is either rank-deficient or indefinite Warning: the matrix is
## either rank-deficient or indefinite Warning: the matrix is either
## rank-deficient or indefinite Warning: the matrix is either rank-deficient
## or indefinite Warning: the matrix is either rank-deficient or indefinite
## Warning: gss warning in gssanova: Newton iteration fails to converge
## Warning: the matrix is either rank-deficient or indefinite Warning: the
## matrix is either rank-deficient or indefinite Warning: the matrix is
## either rank-deficient or indefinite Warning: the matrix is either
## rank-deficient or indefinite Warning: the matrix is either rank-deficient
## or indefinite Warning: the matrix is either rank-deficient or indefinite
## Warning: the matrix is either rank-deficient or indefinite Warning: the
## matrix is either rank-deficient or indefinite Warning: the matrix is
## either rank-deficient or indefinite Warning: the matrix is either
## rank-deficient or indefinite Warning: the matrix is either rank-deficient
## or indefinite
plot(cva_fit)

plot of chunk unnamed-chunk-3

If we now repeat with the gsspsth0 command then there is a striking instabilty sometime after the stimulus response:

cva_fit0 = gsspsth0(nm20120417c0.cva)
plot(cva_fit0)

plot of chunk unnamed-chunk-4