Forecasting Covid-19 infection cases in SAARC and China by using BATS, TBATS, Holt’s Linear trend, and ARIMA model

Covid 19 infection cases in india
Makarovskikh Tatyana Anatolyevna “Макаровских Татьяна Анатольевна”
Abotaleb mostafa “Аботалеб Мостафа”
Department of Electrical Engineering and Computer Science
South ural state university, Chelyabinsk, Russian federation
Pradeep Mishra
Department of Mathematics & Statistics
Jawaharlal Nehru Krishi Vishwavidyalaya, India
#Import
library(fpp2)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## -- Attaching packages ---------------------------------------------- fpp2 2.4 --
## v ggplot2   3.3.2     v fma       2.4  
## v forecast  8.13      v expsmooth 2.3
## 
library(forecast)
library(ggplot2)
library("readxl")
library(moments)
library(forecast)
require(forecast)  
require(tseries)
## Loading required package: tseries
require(markovchain)
## Loading required package: markovchain
## Package:  markovchain
## Version:  0.8.5-3
## Date:     2020-12-03
## BugReport: https://github.com/spedygiorgio/markovchain/issues
require(data.table)
## Loading required package: data.table
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
## 
##     format.pval, units
##Global vriable##
Full_original_data <- read_excel("F:/Phd/Covid 19 in SAARC/Covid 19 in SAARC.xlsx", sheet = "india") # path of your data ( time series data)
original_data<-Full_original_data$Cumulative_cases
y_lab <- "Covid 19 deaths cases in india"   # input name of data
Actual_date_interval <- c("2020/03/01","2021/03/10")
Forecast_date_interval <- c("2021/03/11","2021/03/17")
validation_data_days <-7
frequency<-"day"
country.name <- "india"
# Data Preparation & calculate some of statistics measures
summary(original_data) # Summary your time series
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##        0    17265  1964536  4197111  9095806 11262707
# calculate standard deviation 
data.frame(skewness=skewness(original_data))  # calculate Cofficient of skewness
##    skewness
## 1 0.4240798
data.frame(kurtosis=kurtosis(original_data))   # calculate Cofficient of kurtosis
##   kurtosis
## 1 1.438539
data.frame(Standard.deviation =sd(original_data))
##   Standard.deviation
## 1            4425430
#processing on data (input data)
rows <- NROW(original_data) # calculate number of rows in time series (number of days)
training_data<-original_data[1:(rows-validation_data_days)] # Training data
testing_data<-original_data[(rows-validation_data_days+1):rows] #testing data
AD<-fulldate<-seq(as.Date(Actual_date_interval[1]),as.Date(Actual_date_interval[2]), frequency)  #input range for actual date
FD<-seq(as.Date(Forecast_date_interval[1]),as.Date(Forecast_date_interval[2]), frequency)  #input range forecasting date
N_forecasting_days<-nrow(data.frame(FD))  #calculate number of days that you want to forecasting
validation_dates<-tail(AD,validation_data_days) # select validation_dates
validation_data_by_name<-weekdays(validation_dates) # put names of validation dates
forecasting_data_by_name<-weekdays(FD)  # put names of Forecasting dates
##bats model
# Data Modeling
data_series<-ts(training_data) # make your data to time series
autoplot(data_series ,xlab=paste ("Time in  ", frequency, sep=" "), ylab = y_lab, main=paste ("Actual Data training data :", y_lab, sep=" "))

model_bats<-bats(data_series)
accuracy(model_bats)  # accuracy on training data
##                    ME     RMSE      MAE MPE MAPE      MASE       ACF1
## Training set 228.2447 13180.27 6055.134 NaN  Inf 0.2310183 0.07705743
# Print Model Parameters
model_bats
## BATS(1, {0,0}, 1, -)
## 
## Call: bats(y = data_series)
## 
## Parameters
##   Alpha: 0.4266192
##   Beta: 0.1583616
##   Damping Parameter: 1
## 
## Seed States:
##            [,1]
## [1,] -25.093285
## [2,]   2.274036
## 
## Sigma: 13180.27
## AIC: 10669.67
#ploting BATS Model
plot(model_bats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4)

# Testing Data Evaluation
forecasting_bats <- predict(model_bats, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_bats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 day by using bats Model for  ==>  Covid 19 deaths cases in india"
MAPE_Mean_All.bats_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.bats<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_bats<-paste(round(MAPE_Per_Day,3),"%")
MAPE_bats_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in bats Model for  ==>  Covid 19 deaths cases in india"
paste(MAPE_Mean_All.bats,"%")
## [1] "0.067 % MAPE  7 day Covid 19 deaths cases in india %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in bats Model for  ==>  Covid 19 deaths cases in india"
data.frame(date_bats=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_bats=validation_forecast,MAPE_bats_Model)
##    date_bats validation_data_by_name actual_data forecasting_bats
## 1 2021-03-04                Thursday    11156923         11156331
## 2 2021-03-05                  Friday    11173761         11171731
## 3 2021-03-06                Saturday    11192088         11187131
## 4 2021-03-07                  Sunday    11210799         11202531
## 5 2021-03-08                  Monday    11229398         11217932
## 6 2021-03-09                 Tuesday    11244786         11233332
## 7 2021-03-10               Wednesday    11262707         11248732
##   MAPE_bats_Model
## 1         0.005 %
## 2         0.018 %
## 3         0.044 %
## 4         0.074 %
## 5         0.102 %
## 6         0.102 %
## 7         0.124 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_bats
## 1 2021-03-11        Thursday            11264132
## 2 2021-03-12          Friday            11279532
## 3 2021-03-13        Saturday            11294932
## 4 2021-03-14          Sunday            11310332
## 5 2021-03-15          Monday            11325733
## 6 2021-03-16         Tuesday            11341133
## 7 2021-03-17       Wednesday            11356533
plot(forecasting_bats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_bats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph1

## Error of forecasting
Error_bats<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_bats<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_bats<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_bats<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_bats<-sqrt(sum((Error_bats^2))/validation_data_days)   #  Root mean square forecast error
MSE_bats<-(sum((Error_bats^2))/validation_data_days)   #  Root mean square forecast error
MAD_bats<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_bats<-c(Error_bats)
REOF_Abats<-c(paste(round(REOF_A_bats,3),"%"))
REOF_Fbats<-c(paste(round(REOF_F_bats,3),"%"))
data.frame(correlation_bats,MSE_bats,RMSE_bats,MAPE_Mean_All.bats_Model,MAD_bats) # analysis of Error  by using Bats Model shows result of correlation ,MSE ,MPER
##   correlation_bats MSE_bats RMSE_bats MAPE_Mean_All.bats_Model MAD_bats
## 1        0.9997318 79339385  8907.266                    0.067 7534.549
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_bats,REOF_Abats,REOF_Fbats)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name  AEOF_bats REOF_Abats REOF_Fbats
## 1       2021-03-04            Thursday   591.9493    0.005 %    0.005 %
## 2       2021-03-05              Friday  2029.8159    0.018 %    0.018 %
## 3       2021-03-06            Saturday  4956.6825    0.044 %    0.044 %
## 4       2021-03-07              Sunday  8267.5492    0.074 %    0.074 %
## 5       2021-03-08              Monday 11466.4158    0.102 %    0.102 %
## 6       2021-03-09             Tuesday 11454.2824    0.102 %    0.102 %
## 7       2021-03-10           Wednesday 13975.1491    0.124 %    0.124 %
## TBATS Model
# Data Modeling
data_series<-ts(training_data)
model_TBATS<-forecast:::fitSpecificTBATS(data_series,use.box.cox=FALSE, use.beta=TRUE,  seasonal.periods=c(6),use.damping=FALSE,k.vector=c(2))
accuracy(model_TBATS)  # accuracy on training data
##                    ME     RMSE      MAE MPE MAPE      MASE       ACF1
## Training set 227.5411 12983.43 6475.681 NaN  Inf 0.2470632 0.07428195
# Print Model Parameters
model_TBATS
## TBATS(1, {0,0}, 1, {<6,2>})
## 
## Call: NULL
## 
## Parameters
##   Alpha: 0.4319085
##   Beta: 0.1605974
##   Damping Parameter: 1
##   Gamma-1 Values: -0.003149591
##   Gamma-2 Values: 0.005012398
## 
## Seed States:
##             [,1]
## [1,]   117.57024
## [2,]   -72.81235
## [3,] -1163.38465
## [4,]  -396.77379
## [5,]  -728.23597
## [6,]   353.48945
## 
## Sigma: 12983.43
## AIC: 10668.85
plot(model_TBATS,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)

# Testing Data Evaluation
forecasting_tbats <- predict(model_TBATS, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_tbats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 day by using TBATS Model for  ==>  Covid 19 deaths cases in india"
MAPE_Mean_All.TBATS_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.TBATS<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_TBATS<-paste(round(MAPE_Per_Day,3),"%")
MAPE_TBATS_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in TBATS Model for  ==>  Covid 19 deaths cases in india"
paste(MAPE_Mean_All.TBATS,"%")
## [1] "0.068 % MAPE  7 day Covid 19 deaths cases in india %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in TBATS Model for  ==>  Covid 19 deaths cases in india"
data.frame(date_TBATS=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_TBATS=validation_forecast,MAPE_TBATS_Model)
##   date_TBATS validation_data_by_name actual_data forecasting_TBATS
## 1 2021-03-04                Thursday    11156923          11153751
## 2 2021-03-05                  Friday    11173761          11171724
## 3 2021-03-06                Saturday    11192088          11188389
## 4 2021-03-07                  Sunday    11210799          11204370
## 5 2021-03-08                  Monday    11229398          11219511
## 6 2021-03-09                 Tuesday    11244786          11232040
## 7 2021-03-10               Wednesday    11262707          11246716
##   MAPE_TBATS_Model
## 1          0.028 %
## 2          0.018 %
## 3          0.033 %
## 4          0.057 %
## 5          0.088 %
## 6          0.113 %
## 7          0.142 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_TBATS
## 1 2021-03-11        Thursday             11264690
## 2 2021-03-12          Friday             11281355
## 3 2021-03-13        Saturday             11297336
## 4 2021-03-14          Sunday             11312477
## 5 2021-03-15          Monday             11325006
## 6 2021-03-16         Tuesday             11339682
## 7 2021-03-17       Wednesday             11357656
plot(forecasting_tbats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph2<-autoplot(forecasting_tbats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph2

## Error of forecasting TBATS Model
Error_tbats<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_tbats1<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_tbats<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_tbats<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_tbats<-sqrt(sum((Error_tbats^2))/validation_data_days)   #  Root mean square forecast error
MSE_tbats<-(sum((Error_tbats^2))/validation_data_days)   #  Root mean square forecast error
MAD_tbats<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_tbats<-c(Error_tbats)
REOF_A_tbats<-c(paste(round(REOF_A_tbats1,3),"%"))
REOF_F_tbats<-c(paste(round(REOF_F_tbats,3),"%"))
data.frame(correlation_tbats,MSE_tbats,RMSE_tbats,MAPE_Mean_All.TBATS_Model,MAD_tbats) # analysis of Error  by using TBATS model shows result of correlation ,MSE ,MPER
##   correlation_tbats MSE_tbats RMSE_tbats MAPE_Mean_All.TBATS_Model MAD_tbats
## 1         0.9989753  83590656   9142.793                     0.068  7708.645
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_tbats,REOF_A_tbats,REOF_F_tbats)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_tbats REOF_A_tbats REOF_F_tbats
## 1       2021-03-04            Thursday   3172.368      0.028 %      0.028 %
## 2       2021-03-05              Friday   2036.990      0.018 %      0.018 %
## 3       2021-03-06            Saturday   3698.565      0.033 %      0.033 %
## 4       2021-03-07              Sunday   6429.207      0.057 %      0.057 %
## 5       2021-03-08              Monday   9886.975      0.088 %      0.088 %
## 6       2021-03-09             Tuesday  12745.822      0.113 %      0.113 %
## 7       2021-03-10           Wednesday  15990.591      0.142 %      0.142 %
## Holt's linear trend
# Data Modeling
data_series<-ts(training_data)
model_holt<-holt(data_series,h=N_forecasting_days+validation_data_days,lambda = "auto")
accuracy(model_holt)  # accuracy on training data
##                     ME     RMSE      MAE MPE MAPE     MASE       ACF1
## Training set -1784.803 14083.39 5355.172 NaN  Inf 0.204313 -0.2062556
# Print Model Parameters
summary(model_holt$model)
## Holt's method 
## 
## Call:
##  holt(y = data_series, h = N_forecasting_days + validation_data_days,  
## 
##  Call:
##      lambda = "auto") 
## 
##   Box-Cox transformation: lambda= 0.2949 
## 
##   Smoothing parameters:
##     alpha = 0.7943 
##     beta  = 0.1578 
## 
##   Initial states:
##     l = -3.3946 
##     b = 0.0031 
## 
##   sigma:  0.4689
## 
##      AIC     AICc      BIC 
## 1939.861 1940.004 1960.133 
## 
## Training set error measures:
##                     ME     RMSE      MAE MPE MAPE     MASE       ACF1
## Training set -1784.803 14083.39 5355.172 NaN  Inf 0.204313 -0.2062556
# Testing Data Evaluation
forecasting_holt <- predict(model_holt, h=N_forecasting_days+validation_data_days,lambda = "auto")
validation_forecast<-head(forecasting_holt$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 day by using holt Model for  ==>  Covid 19 deaths cases in india"
MAPE_Mean_All.Holt_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.Holt<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_holt<-paste(round(MAPE_Per_Day,3),"%")
MAPE_holt_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in holt Model for  ==>  Covid 19 deaths cases in india"
paste(MAPE_Mean_All.Holt,"%")
## [1] "0.1 % MAPE  7 day Covid 19 deaths cases in india %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in holt Model for  ==>  Covid 19 deaths cases in india"
data.frame(date_holt=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_holt=validation_forecast,MAPE_holt_Model)
##    date_holt validation_data_by_name actual_data forecasting_holt
## 1 2021-03-04                Thursday    11156923         11154378
## 2 2021-03-05                  Friday    11173761         11169170
## 3 2021-03-06                Saturday    11192088         11183976
## 4 2021-03-07                  Sunday    11210799         11198796
## 5 2021-03-08                  Monday    11229398         11213629
## 6 2021-03-09                 Tuesday    11244786         11228477
## 7 2021-03-10               Wednesday    11262707         11243338
##   MAPE_holt_Model
## 1         0.023 %
## 2         0.041 %
## 3         0.072 %
## 4         0.107 %
## 5          0.14 %
## 6         0.145 %
## 7         0.172 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_holt
## 1 2021-03-11        Thursday            11258213
## 2 2021-03-12          Friday            11273102
## 3 2021-03-13        Saturday            11288005
## 4 2021-03-14          Sunday            11302922
## 5 2021-03-15          Monday            11317852
## 6 2021-03-16         Tuesday            11332797
## 7 2021-03-17       Wednesday            11347756
plot(forecasting_holt)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph3<-autoplot(forecasting_holt,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph3

## Error of forecasting by using Holt's linear model
Error_Holt<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_Holt1<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_Holt<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_Holt<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_Holt<-sqrt(sum((Error_Holt^2))/validation_data_days)   #  Root mean square forecast error
MSE_Holt<-(sum((Error_Holt^2))/validation_data_days)   #  Root mean square forecast error
MAD_Holt<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_Holt<-c(Error_Holt)
REOF_A_Holt<-c(paste(round(REOF_A_Holt1,3),"%"))
REOF_F_Holt<-c(paste(round(REOF_F_Holt,3),"%"))
REOF_A_Holt11<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))
data.frame(correlation_Holt,MSE_Holt,RMSE_Holt,MAPE_Mean_All.Holt_Model,MAD_Holt) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_Holt  MSE_Holt RMSE_Holt MAPE_Mean_All.Holt_Model MAD_Holt
## 1        0.9997226 161034066  12689.92                      0.1 11242.58
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_Holt,REOF_A_Holt,REOF_F_Holt)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_Holt REOF_A_Holt REOF_F_Holt
## 1       2021-03-04            Thursday  2544.963     0.023 %     0.023 %
## 2       2021-03-05              Friday  4590.892     0.041 %     0.041 %
## 3       2021-03-06            Saturday  8111.996     0.072 %     0.073 %
## 4       2021-03-07              Sunday 12003.266     0.107 %     0.107 %
## 5       2021-03-08              Monday 15768.695      0.14 %     0.141 %
## 6       2021-03-09             Tuesday 16309.276     0.145 %     0.145 %
## 7       2021-03-10           Wednesday 19369.001     0.172 %     0.172 %
#Auto arima model
##################
require(tseries) # need to install tseries tj test Stationarity in time series 
paste ("tests For Check Stationarity in series  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series  ==>  Covid 19 deaths cases in india"
kpss.test(data_series) # applay kpss test
## Warning in kpss.test(data_series): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  data_series
## KPSS Level = 6.7529, Truncation lag parameter = 5, p-value = 0.01
pp.test(data_series)   # applay pp test
## 
##  Phillips-Perron Unit Root Test
## 
## data:  data_series
## Dickey-Fuller Z(alpha) = -2.3528, Truncation lag parameter = 5, p-value
## = 0.9585
## alternative hypothesis: stationary
adf.test(data_series)  # applay adf test
## Warning in adf.test(data_series): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_series
## Dickey-Fuller = -4.1766, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
ndiffs(data_series)    # Doing first diffrencing on data
## [1] 2
#Taking the first difference
diff1_x1<-diff(data_series)
autoplot(diff1_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black",  ylab=y_lab,main = "1nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking first differences in  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking first differences in  ==>  Covid 19 deaths cases in india"
kpss.test(diff1_x1)   # applay kpss test after taking first differences
## Warning in kpss.test(diff1_x1): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff1_x1
## KPSS Level = 2.6829, Truncation lag parameter = 5, p-value = 0.01
pp.test(diff1_x1)     # applay pp test after taking first differences
## Warning in pp.test(diff1_x1): p-value smaller than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff1_x1
## Dickey-Fuller Z(alpha) = -133.46, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff1_x1)    # applay adf test after taking first differences
## Warning in adf.test(diff1_x1): p-value greater than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff1_x1
## Dickey-Fuller = -0.28007, Lag order = 7, p-value = 0.99
## alternative hypothesis: stationary
#Taking the second difference
diff2_x1=diff(diff1_x1)
autoplot(diff2_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", ylab=y_lab ,main = "2nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking Second differences in",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking Second differences in Covid 19 deaths cases in india"
kpss.test(diff2_x1)   # applay kpss test after taking Second differences
## Warning in kpss.test(diff2_x1): p-value greater than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff2_x1
## KPSS Level = 0.052879, Truncation lag parameter = 5, p-value = 0.1
pp.test(diff2_x1)     # applay pp test after taking Second differences
## Warning in pp.test(diff2_x1): p-value smaller than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff2_x1
## Dickey-Fuller Z(alpha) = -574.57, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff2_x1)    # applay adf test after taking Second differences
## Warning in adf.test(diff2_x1): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff2_x1
## Dickey-Fuller = -11.767, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
####Fitting an ARIMA Model
#1. Using auto arima function
model1 <- auto.arima(data_series,stepwise=FALSE, approximation=FALSE, trace=T, test = c("kpss", "adf", "pp"))  #applaying auto arima
## 
##  ARIMA(0,2,0)                    : 9706.402
##  ARIMA(0,2,1)                    : 9358.667
##  ARIMA(0,2,2)                    : 9258.286
##  ARIMA(0,2,3)                    : 9253.054
##  ARIMA(0,2,4)                    : 9254.79
##  ARIMA(0,2,5)                    : 9254.382
##  ARIMA(1,2,0)                    : 9505.114
##  ARIMA(1,2,1)                    : 9303.774
##  ARIMA(1,2,2)                    : 9252.218
##  ARIMA(1,2,3)                    : 9243.619
##  ARIMA(1,2,4)                    : Inf
##  ARIMA(2,2,0)                    : 9388.879
##  ARIMA(2,2,1)                    : 9279.157
##  ARIMA(2,2,2)                    : 9252.361
##  ARIMA(2,2,3)                    : Inf
##  ARIMA(3,2,0)                    : 9332.426
##  ARIMA(3,2,1)                    : 9274.907
##  ARIMA(3,2,2)                    : 9248.451
##  ARIMA(4,2,0)                    : 9312.259
##  ARIMA(4,2,1)                    : 9273.657
##  ARIMA(5,2,0)                    : 9271.711
## 
## 
## 
##  Best model: ARIMA(1,2,3)
model1 # show the result of autoarima 
## Series: data_series 
## ARIMA(1,2,3) 
## 
## Coefficients:
##          ar1      ma1     ma2      ma3
##       0.9522  -2.3512  1.8461  -0.4792
## s.e.  0.0299   0.0595  0.1103   0.0562
## 
## sigma^2 estimated as 168336440:  log likelihood=-4616.74
## AIC=9243.48   AICc=9243.62   BIC=9263.72
#Make changes in the source of auto arima to run the best model
arima.string <- function (object, padding = FALSE) 
{
  order <- object$arma[c(1, 6, 2, 3, 7, 4, 5)]
  m <- order[7]
  result <- paste("ARIMA(", order[1], ",", order[2], ",", 
                  order[3], ")", sep = "")
  if (m > 1 && sum(order[4:6]) > 0) {
    result <- paste(result, "(", order[4], ",", order[5], 
                    ",", order[6], ")[", m, "]", sep = "")
  }
  if (padding && m > 1 && sum(order[4:6]) == 0) {
    result <- paste(result, "         ", sep = "")
    if (m <= 9) {
      result <- paste(result, " ", sep = "")
    }
    else if (m <= 99) {
      result <- paste(result, "  ", sep = "")
    }
    else {
      result <- paste(result, "   ", sep = "")
    }
  }
  if (!is.null(object$xreg)) {
    if (NCOL(object$xreg) == 1 && is.element("drift", names(object$coef))) {
      result <- paste(result, "with drift        ")
    }
    else {
      result <- paste("Regression with", result, "errors")
    }
  }
  else {
    if (is.element("constant", names(object$coef)) || is.element("intercept", 
                                                                 names(object$coef))) {
      result <- paste(result, "with non-zero mean")
    }
    else if (order[2] == 0 && order[5] == 0) {
      result <- paste(result, "with zero mean    ")
    }
    else {
      result <- paste(result, "                  ")
    }
  }
  if (!padding) {
    result <- gsub("[ ]*$", "", result)
  }
  return(result)
}


bestmodel <- arima.string(model1, padding = TRUE)
bestmodel <- substring(bestmodel,7,11)
bestmodel <- gsub(" ", "", bestmodel)
bestmodel <- gsub(")", "", bestmodel)
bestmodel <- strsplit(bestmodel, ",")[[1]]
bestmodel <- c(strtoi(bestmodel[1]),strtoi(bestmodel[2]),strtoi(bestmodel[3]))
bestmodel
## [1] 1 2 3
strtoi(bestmodel[3])
## [1] 3
#2. Using ACF and PACF Function
#par(mfrow=c(1,2))  # Code for making two plot in one graph 
acf(diff2_x1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab, main=paste("ACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))    # plot ACF "auto correlation function after taking second diffrences

pacf(diff2_x1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main=paste("PACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))   # plot PACF " Partial auto correlation function after taking second diffrences

library(forecast)   # install library forecast             
x1_model1= arima(data_series, order=c(bestmodel)) # Run Best model of auto arima  for forecasting
x1_model1  # Show result of best model of auto arima 
## 
## Call:
## arima(x = data_series, order = c(bestmodel))
## 
## Coefficients:
##          ar1      ma1     ma2      ma3
##       0.9522  -2.3512  1.8461  -0.4792
## s.e.  0.0299   0.0595  0.1103   0.0562
## 
## sigma^2 estimated as 166748360:  log likelihood = -4616.74,  aic = 9243.48
paste ("accuracy of autoarima Model For  ==> ",y_lab, sep=" ")
## [1] "accuracy of autoarima Model For  ==>  Covid 19 deaths cases in india"
accuracy(x1_model1)  # aacuracy of best model from auto arima
##                    ME     RMSE      MAE      MPE    MAPE      MASE      ACF1
## Training set 143.8378 12882.76 5688.494 1.372526 2.51792 0.2170301 0.0245581
x1_model1$x          # show result of best model from auto arima 
## NULL
checkresiduals(x1_model1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)  # checkresiduals from best model from using auto arima 

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(1,2,3)
## Q* = 10.222, df = 6, p-value = 0.1156
## 
## Model df: 4.   Total lags used: 10
paste("Box-Ljung test , Ljung-Box test For Modelling for   ==> ",y_lab, sep=" ")
## [1] "Box-Ljung test , Ljung-Box test For Modelling for   ==>  Covid 19 deaths cases in india"
Box.test(x1_model1$residuals^2, lag=20, type="Ljung-Box")   # Do test for resdulas by using Box-Ljung test , Ljung-Box test For Modelling
## 
##  Box-Ljung test
## 
## data:  x1_model1$residuals^2
## X-squared = 231.2, df = 20, p-value < 2.2e-16
library(tseries)
jarque.bera.test(x1_model1$residuals)  # Do test jarque.bera.test 
## 
##  Jarque Bera Test
## 
## data:  x1_model1$residuals
## X-squared = 6859.6, df = 2, p-value < 2.2e-16
#Actual Vs Fitted
plot(data_series, col='red',lwd=2, main="Actual vs Fitted Plot", xlab='Time in (days)', ylab=y_lab) # plot actual and Fitted model 
lines(fitted(x1_model1), col='black')

#Test data
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) ) # make testing data in time series and start from rows-6
forecasting_auto_arima <- forecast(x1_model1, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_auto_arima$mean,validation_data_days)
MAPE_Per_Day<-round(abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 day by using bats Model for  ==>  Covid 19 deaths cases in india"
MAPE_Mean_All.ARIMA_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.ARIMA<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_auto_arima<-paste(round(MAPE_Per_Day,3),"%")
MAPE_auto.arima_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in bats Model for  ==>  Covid 19 deaths cases in india"
paste(MAPE_Mean_All.ARIMA,"%")
## [1] "0.029 % MAPE  7 day Covid 19 deaths cases in india %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in bats Model for  ==>  Covid 19 deaths cases in india"
data.frame(date_auto.arima=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_auto.arima=validation_forecast,MAPE_auto.arima_Model)
##   date_auto.arima validation_data_by_name actual_data forecasting_auto.arima
## 1      2021-03-04                Thursday    11156923               11156991
## 2      2021-03-05                  Friday    11173761               11173302
## 3      2021-03-06                Saturday    11192088               11189798
## 4      2021-03-07                  Sunday    11210799               11206472
## 5      2021-03-08                  Monday    11229398               11223314
## 6      2021-03-09                 Tuesday    11244786               11240316
## 7      2021-03-10               Wednesday    11262707               11257472
##   MAPE_auto.arima_Model
## 1               0.001 %
## 2               0.004 %
## 3                0.02 %
## 4               0.039 %
## 5               0.054 %
## 6                0.04 %
## 7               0.046 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_auto.arima
## 1 2021-03-11        Thursday                  11274772
## 2 2021-03-12          Friday                  11292212
## 3 2021-03-13        Saturday                  11309783
## 4 2021-03-14          Sunday                  11327480
## 5 2021-03-15          Monday                  11345296
## 6 2021-03-16         Tuesday                  11363226
## 7 2021-03-17       Wednesday                  11381265
plot(forecasting_auto_arima)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph4<-autoplot(forecasting_auto_arima,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph4

MAPE_Mean_All.ARIMA
## [1] "0.029 % MAPE  7 day Covid 19 deaths cases in india"
## Error of forecasting
Error_auto.arima<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_auto.arima<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_auto.arima<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_auto.arima<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_auto.arima<-sqrt(sum((Error_auto.arima^2))/validation_data_days)   #  Root mean square forecast error
MSE_auto.arima<-(sum((Error_auto.arima^2))/validation_data_days)   #  Root mean square forecast error
MAD_auto.arima<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_auto.arima<-c(Error_auto.arima)
REOF_auto.arima1<-c(paste(round(REOF_A_auto.arima,3),"%"))
REOF_auto.arima2<-c(paste(round(REOF_F_auto.arima,3),"%"))
data.frame(correlation_auto.arima,MSE_auto.arima,RMSE_auto.arima,MAPE_Mean_All.ARIMA_Model,MAD_auto.arima) # analysis of Error  by using Auto ARIMAA model shows result of correlation ,MSE ,MPER
##   correlation_auto.arima MSE_auto.arima RMSE_auto.arima
## 1              0.9995999       15511472        3938.461
##   MAPE_Mean_All.ARIMA_Model MAD_auto.arima
## 1                     0.029       3256.607
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_auto.arima,REOF_A_auto.arima=REOF_auto.arima1,REOF_F_auto.arima=REOF_auto.arima2)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_auto.arima REOF_A_auto.arima
## 1       2021-03-04            Thursday        68.21188           0.001 %
## 2       2021-03-05              Friday       459.09742           0.004 %
## 3       2021-03-06            Saturday      2289.54999            0.02 %
## 4       2021-03-07              Sunday      4327.03163           0.039 %
## 5       2021-03-08              Monday      6084.00333           0.054 %
## 6       2021-03-09             Tuesday      4469.52156            0.04 %
## 7       2021-03-10           Wednesday      5235.25761           0.046 %
##   REOF_F_auto.arima
## 1           0.001 %
## 2           0.004 %
## 3            0.02 %
## 4           0.039 %
## 5           0.054 %
## 6            0.04 %
## 7           0.047 %
# Table for MAPE For counry
best_recommended_model <- min(MAPE_Mean_All.bats_Model,MAPE_Mean_All.TBATS_Model,MAPE_Mean_All.Holt_Model,MAPE_Mean_All.ARIMA_Model)
paste("System Choose Least Error ==> ( MAPE %) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==> ", y_lab , sep=" ")
## [1] "System Choose Least Error ==> ( MAPE %) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==>  Covid 19 deaths cases in india"
best_recommended_model
## [1] 0.029
x1<-if(best_recommended_model >= MAPE_Mean_All.bats_Model) {paste("BATS Model")}
x2<-if(best_recommended_model >= MAPE_Mean_All.TBATS_Model) {paste("TBATS Model")}
x3<-if(best_recommended_model >= MAPE_Mean_All.Holt_Model) {paste("Holt Model")}
x4<-if(best_recommended_model >= MAPE_Mean_All.ARIMA_Model) {paste("ARIMA Model")}
result<-c(x1,x2,x3,x4)
table.error<-data.frame(country.name,BATS.Model=MAPE_Mean_All.bats_Model,TBATS.Model=MAPE_Mean_All.TBATS_Model,Holt.Model=MAPE_Mean_All.Holt_Model,ARIMA.Model=MAPE_Mean_All.ARIMA_Model,Best.Model=result)
library(ascii)
print(ascii(table(table.error)), type = "rest")
## 
## +---+--------------+------------+-------------+------------+-------------+-------------+------+
## |   | country.name | BATS.Model | TBATS.Model | Holt.Model | ARIMA.Model | Best.Model  | Freq |
## +===+==============+============+=============+============+=============+=============+======+
## | 1 | india        | 0.067      | 0.068       | 0.1        | 0.029       | ARIMA Model | 1.00 |
## +---+--------------+------------+-------------+------------+-------------+-------------+------+
message("System finished Forecasting  by using autoarima and Holt's ,TBATS, and SIR  Model ==>",y_lab, sep=" ")
## System finished Forecasting  by using autoarima and Holt's ,TBATS, and SIR  Model ==>Covid 19 deaths cases in india
message(" Thank you for using our System For Modelling  ==> ",y_lab, sep=" ")
##  Thank you for using our System For Modelling  ==> Covid 19 deaths cases in india