1 Objetivo

Determinar medidas de localización basadas en estadísticos cuartiles y percentiles utilizando de un conjunto de datos así como determinar su significado, visualización e interpretación.

2 Descripción

El caso pretende dar a conocer como determinar cuartiles y percentiles de un conjunto de datos.

Los datos será simulados, primero un conjunto de valores numéricos y la segunda parte se hace uso de los datos descargados del promedio de alumnos.

Este caso inicia con la declaración con cargar las librerías, posteriormente, se simulan los datos y se descargan los datos de alumnos, finalmente se aplican los cuartiles y percentiles así como su visualización , se identifica también su significado e interpretación.

3 Marco Teórico

Pendiente

4 Desarrollo

4.1 Cargar librerías

library(readr)
library(ggplot2)

4.2 Datos simulados

4.2.1 Crear datos con sample

set.seed(2021)
datos <- sample(18:65, 100, replace = TRUE)
datos
##   [1] 24 55 63 56 29 23 55 55 63 22 64 56 58 40 29 35 20 63 57 43 53 54 39 48 65
##  [26] 51 36 21 39 22 26 55 35 60 23 39 23 32 51 39 33 32 41 34 55 54 37 21 47 25
##  [51] 36 20 19 34 57 58 48 26 46 44 28 53 55 63 32 35 26 36 33 61 51 54 59 61 39
##  [76] 55 44 61 30 50 63 38 42 48 62 28 26 40 60 39 53 47 63 65 24 46 18 36 62 53
n <- length(datos)
n
## [1] 100

4.2.2 Agregando datos atípicos a los datos

datos <- c(datos, c(-13,9,96,150))
datos
##   [1]  24  55  63  56  29  23  55  55  63  22  64  56  58  40  29  35  20  63
##  [19]  57  43  53  54  39  48  65  51  36  21  39  22  26  55  35  60  23  39
##  [37]  23  32  51  39  33  32  41  34  55  54  37  21  47  25  36  20  19  34
##  [55]  57  58  48  26  46  44  28  53  55  63  32  35  26  36  33  61  51  54
##  [73]  59  61  39  55  44  61  30  50  63  38  42  48  62  28  26  40  60  39
##  [91]  53  47  63  65  24  46  18  36  62  53 -13   9  96 150

4.2.3 Ordenando los datos con order

datos.ordenados <- datos[order(datos)]
datos.ordenados
##   [1] -13   9  18  19  20  20  21  21  22  22  23  23  23  24  24  25  26  26
##  [19]  26  26  28  28  29  29  30  32  32  32  33  33  34  34  35  35  35  36
##  [37]  36  36  36  37  38  39  39  39  39  39  39  40  40  41  42  43  44  44
##  [55]  46  46  47  47  48  48  48  50  51  51  51  53  53  53  53  54  54  54
##  [73]  55  55  55  55  55  55  55  56  56  57  57  58  58  59  60  60  61  61
##  [91]  61  62  62  63  63  63  63  63  63  64  65  65  96 150

4.2.4 Cuartiles conforme a fórmula

q1 <- datos.ordenados[(n+1) * 25/100]; q1
## [1] 30
q2 <- datos.ordenados[(n+1) * 50/100]; q2
## [1] 41
q3 <- datos.ordenados[(n+1) * 75/100]; q3
## [1] 55

4.2.5 Cuartiles por medio de la función quantile()

Q1 <- quantile(datos, c(0.25), type = 6); Q1
## 25% 
##  32
Q2 <- quantile(datos, c(0.50), type = 6); Q2
##  50% 
## 43.5
Q3 <- quantile(datos, c(0.75), type = 6); Q3
## 75% 
##  55
mediana <- median(datos)
mediana
## [1] 43.5
Q2
##  50% 
## 43.5

4.2.6 Percentiles

P10 <- quantile(datos, c(0.10)); P10
## 10% 
##  23
percentiles <- quantile(datos, c(0.2, 0.40, 0.50, 0.60, 0.80), type = 6)
percentiles
##  20%  40%  50%  60%  80% 
## 28.0 39.0 43.5 51.0 58.0

4.2.7 Máximos y mínimos

minimo <- min(datos)
maximo <- max(datos)
 
minimo; Q1; Q2; Q3; maximo
## [1] -13
## 25% 
##  32
##  50% 
## 43.5
## 75% 
##  55
## [1] 150
summary(datos)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -13.00   32.00   43.50   43.93   55.00  150.00

4.2.8 Convertir a data.frame

datos <- data.frame(datos)
datos
##     datos
## 1      24
## 2      55
## 3      63
## 4      56
## 5      29
## 6      23
## 7      55
## 8      55
## 9      63
## 10     22
## 11     64
## 12     56
## 13     58
## 14     40
## 15     29
## 16     35
## 17     20
## 18     63
## 19     57
## 20     43
## 21     53
## 22     54
## 23     39
## 24     48
## 25     65
## 26     51
## 27     36
## 28     21
## 29     39
## 30     22
## 31     26
## 32     55
## 33     35
## 34     60
## 35     23
## 36     39
## 37     23
## 38     32
## 39     51
## 40     39
## 41     33
## 42     32
## 43     41
## 44     34
## 45     55
## 46     54
## 47     37
## 48     21
## 49     47
## 50     25
## 51     36
## 52     20
## 53     19
## 54     34
## 55     57
## 56     58
## 57     48
## 58     26
## 59     46
## 60     44
## 61     28
## 62     53
## 63     55
## 64     63
## 65     32
## 66     35
## 67     26
## 68     36
## 69     33
## 70     61
## 71     51
## 72     54
## 73     59
## 74     61
## 75     39
## 76     55
## 77     44
## 78     61
## 79     30
## 80     50
## 81     63
## 82     38
## 83     42
## 84     48
## 85     62
## 86     28
## 87     26
## 88     40
## 89     60
## 90     39
## 91     53
## 92     47
## 93     63
## 94     65
## 95     24
## 96     46
## 97     18
## 98     36
## 99     62
## 100    53
## 101   -13
## 102     9
## 103    96
## 104   150

4.2.9 Diagrama de cajas de los datos

4.2.9.1 Diagrama de caja en función del eje de las x

ggplot(data = datos, mapping = aes(x=datos)) + geom_boxplot(outlier.colour="red")

4.2.9.2 Diagrama de caja en función del eje de las y

ggplot(data = datos, mapping = aes(y=datos)) + geom_boxplot(outlier.colour="red")

4.3 Datos de los alumnos

4.3.1 Importar datos

datos.alumnos <- read.csv("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/promedios%20alumnos/ALUMNOS%20EJ2021.csv")

head(datos.alumnos)
##   NoControl Alumno Semestre Cr.Aprobados Cr.Cursando Promedio  Carrera
## 1         1      1       12          207          19    79.84 SISTEMAS
## 2         2      2       13          226           9    82.55 SISTEMAS
## 3         3      3       10          235          10    95.16 SISTEMAS
## 4         4      4       13          231          14    79.32 SISTEMAS
## 5         5      5       10          235          10    92.67 SISTEMAS
## 6         6      6       10          235          10    91.25 SISTEMAS
tail(datos.alumnos)
##      NoControl Alumno Semestre Cr.Aprobados Cr.Cursando Promedio      Carrera
## 6037       750    750        9          170          20    81.16 ARQUITECTURA
## 6038       751    751        7          103          19    84.43 ARQUITECTURA
## 6039       752    752        4           76          34    92.47 ARQUITECTURA
## 6040       753    753        4           84          26    89.74 ARQUITECTURA
## 6041       754    754        3           52          28    87.75 ARQUITECTURA
## 6042       755    755        2           18          22    86.50 ARQUITECTURA
n <- nrow(datos.alumnos)
n
## [1] 6042

4.3.2 summary de datos.alumnos

datos.alumnos$Carrera <- factor(datos.alumnos$Carrera)

summary(datos.alumnos)
##    NoControl         Alumno         Semestre       Cr.Aprobados  
##  Min.   :  1.0   Min.   :  1.0   Min.   : 1.000   Min.   :  0.0  
##  1st Qu.:112.0   1st Qu.:112.0   1st Qu.: 3.000   1st Qu.: 53.0  
##  Median :245.0   Median :245.0   Median : 5.000   Median :109.0  
##  Mean   :268.1   Mean   :268.1   Mean   : 5.428   Mean   :114.8  
##  3rd Qu.:394.0   3rd Qu.:394.0   3rd Qu.: 8.000   3rd Qu.:172.0  
##  Max.   :755.0   Max.   :755.0   Max.   :17.000   Max.   :264.0  
##                                                   NA's   :499    
##   Cr.Cursando       Promedio                Carrera    
##  Min.   : 3.00   Min.   :  0.00   ARQUITECTURA  : 755  
##  1st Qu.:23.00   1st Qu.: 82.20   INDUSTRIAL    : 721  
##  Median :27.00   Median : 85.83   CIVIL         : 674  
##  Mean   :26.09   Mean   : 79.33   QUIMICA       : 564  
##  3rd Qu.:30.00   3rd Qu.: 89.50   GESTION       : 557  
##  Max.   :42.00   Max.   :100.00   ADMINISTRACION: 492  
##                                   (Other)       :2279

4.3.3 Cuartiles

cuartiles <- quantile(x = datos.alumnos$Promedio, probs = c(0.25, 0.50, 0.75), type = 6)
cuartiles
##   25%   50%   75% 
## 82.20 85.83 89.50
Q1 <- cuartiles[1]; Q1
##  25% 
## 82.2
Q2 <- cuartiles[2]; Q2
##   50% 
## 85.83
Q3 <- cuartiles[3]; Q3
##  75% 
## 89.5

4.3.4 Atípicos mayores. Rango intercuartil

atipicos.mayores <- Q3 + 1.5 * (Q3-Q1)
atipicos.mayores
##    75% 
## 100.45

4.3.5 Atípicos menores. Rango intercuartil

atipicos.menores <- Q1 - 1.5 * (Q3-Q1)
atipicos.menores
##   25% 
## 71.25

4.3.6 Diagrama de cajas con datos atípicos

ggplot(data = datos.alumnos, mapping = aes(y=Promedio)) + geom_boxplot(outlier.colour="red")

4.3.7 Limpiando valores atípicos

datos.alumnos <- subset(datos.alumnos, Promedio > 0)
head(datos.alumnos)
##   NoControl Alumno Semestre Cr.Aprobados Cr.Cursando Promedio  Carrera
## 1         1      1       12          207          19    79.84 SISTEMAS
## 2         2      2       13          226           9    82.55 SISTEMAS
## 3         3      3       10          235          10    95.16 SISTEMAS
## 4         4      4       13          231          14    79.32 SISTEMAS
## 5         5      5       10          235          10    92.67 SISTEMAS
## 6         6      6       10          235          10    91.25 SISTEMAS
tail(datos.alumnos)
##      NoControl Alumno Semestre Cr.Aprobados Cr.Cursando Promedio      Carrera
## 6037       750    750        9          170          20    81.16 ARQUITECTURA
## 6038       751    751        7          103          19    84.43 ARQUITECTURA
## 6039       752    752        4           76          34    92.47 ARQUITECTURA
## 6040       753    753        4           84          26    89.74 ARQUITECTURA
## 6041       754    754        3           52          28    87.75 ARQUITECTURA
## 6042       755    755        2           18          22    86.50 ARQUITECTURA
n<-nrow(datos.alumnos)
n
## [1] 5535

4.3.8 Nuevos cuartiles con datos limpios

cuartiles <- quantile(x = datos.alumnos$Promedio, probs = c(0.25, 0.50, 0.75), type = 6)
cuartiles
##   25%   50%   75% 
## 83.24 86.36 89.83
Q1 <- cuartiles[1]; Q1
##   25% 
## 83.24
Q2 <- cuartiles[2]; Q2
##   50% 
## 86.36
Q3 <- cuartiles[3]; Q3
##   75% 
## 89.83

4.3.9 Diagramas de cajas con datos limpios

summary(datos.alumnos)
##    NoControl         Alumno         Semestre       Cr.Aprobados  Cr.Cursando  
##  Min.   :  1.0   Min.   :  1.0   Min.   : 2.000   Min.   :  4   Min.   : 3.0  
##  1st Qu.:106.0   1st Qu.:106.0   1st Qu.: 3.000   1st Qu.: 53   1st Qu.:23.0  
##  Median :239.0   Median :239.0   Median : 6.000   Median :109   Median :28.0  
##  Mean   :262.2   Mean   :262.2   Mean   : 5.826   Mean   :115   Mean   :26.1  
##  3rd Qu.:388.0   3rd Qu.:388.0   3rd Qu.: 8.000   3rd Qu.:172   3rd Qu.:30.0  
##  Max.   :755.0   Max.   :755.0   Max.   :17.000   Max.   :264   Max.   :42.0  
##                                                                               
##     Promedio                Carrera    
##  Min.   : 70.00   INDUSTRIAL    : 653  
##  1st Qu.: 83.25   ARQUITECTURA  : 633  
##  Median : 86.36   CIVIL         : 594  
##  Mean   : 86.60   GESTION       : 518  
##  3rd Qu.: 89.83   QUIMICA       : 515  
##  Max.   :100.00   ADMINISTRACION: 458  
##                   (Other)       :2164
ggplot(data = datos.alumnos, mapping = aes(y=Promedio)) + geom_boxplot(outlier.colour="red") +
  labs(title = "Promedio de Alumnos",subtitle =  paste("Q1 = ",Q1, ", Q2 = ",Q2, ", Q3 = ",Q3))

4.4 Histograma con cuartiles

ggplot(data = datos.alumnos, aes(x=Promedio)) +
    geom_histogram(bins = 30) + 
    geom_vline(aes(xintercept = Q1,
                  color = "Q1"),
              linetype = "dashed",
              size = 1) +
    geom_vline(aes(xintercept = Q2,
                  color = "Q2"),
              linetype = "dashed",
              size = 1) +
    geom_vline(aes(xintercept = Q3,
                  color = "Q3"),
              linetype = "dashed",
              size = 1) +  
  labs(title = "Histograma de Promedio de Alumnos",subtitle =  paste("Cuartil 1 al 25% = ",Q1, ", Cuartil 2 al 50% = ",Q2, ", Cuartil 3 al 75% = ",Q3))

5 Interpretación

  • ¿Qué significan los cuartiles en un conjunto de datos? Los cuartiles significan o son las cuartas partes que tiene un conjunto de datos.

  • ¿Qué significa el rango intercuartil y para qué sirve? Se le llama rango intercuartil a la diferencia que existe entre el primer y el tercer cuartil.

  • En el conjunto de datos de alumnos si un alumno tiene promedio de 80 ¿está por encima o por debajo del segundo cuartil? Esta por debajo del segundo cuartil, puesto que el segundo cuartil es igual a 85.83.

  • ¿Cómo se interpreta e diagrama de caja? El diagrama de caja es como podemos dar una interpretación gráfica de los cuartiles del conjunto de datos.

  • ¿Qué describe la función summary() y como se interpreta? La función summary() en el caso, describe de una manera más ordenada y concisa los datos de los alumnos, así como la mediana, la moda y los extremos máximos y mínimos de el conjunto de datos.

  • ¿Qué les deja el caso? El caso deja en mi persona, un nuevo tema a mis capacidad de utilización del programa RStudio, en cuanto a las medidas de posición, las cuales hacen más fácil el identificar los datos del conjunto, y de esta manera analizarlos de mejor manera. También motiva a seguir dominando mác capacidades y descubrir nuevas funciones y librerías del programa.

Describir con sus palabras …80 a 100 palabras ….

6 Referencias bibliográficas

  • Lind, Douglas, William Marchal, and Samuel Wathen. 2015. Estadística Aplicada a Los Negocios y La Economía. Decimo Sexta. México, D.F.: McGraw-Hill.