IBNR (incurred but not reported)

The next definition was taken from https://www.investopedia.com/terms/i/incurredbutnotreported.asp.

Incurred but not reported (IBNR) is a type of reserve account used in the insurance industry as the provision for claims and/or events that have transpired, but have not yet been reported to an insurance company.

The problem

The problem consists of the estimation of outstanding claims reserves in general insurance.

The next figure graphically depicts the problem; the idea is to estimate the unobserved claims using the left triangle observations.

The ChainLadder R package

The ChainLadder R package can be used to …

To install the package you can use the next code.

install.packages('ChainLadder')

To use the package you can load it using the next code.

library(ChainLadder)

Datasets

The datasets for the estimation of outstanding claims reserves in general insurance must have the next triangle structure:

RAA
##       dev
## origin    1     2     3     4     5     6     7     8     9    10
##   1981 5012  8269 10907 11805 13539 16181 18009 18608 18662 18834
##   1982  106  4285  5396 10666 13782 15599 15496 16169 16704    NA
##   1983 3410  8992 13873 16141 18735 22214 22863 23466    NA    NA
##   1984 5655 11555 15766 21266 23425 26083 27067    NA    NA    NA
##   1985 1092  9565 15836 22169 25955 26180    NA    NA    NA    NA
##   1986 1513  6445 11702 12935 15852    NA    NA    NA    NA    NA
##   1987  557  4020 10946 12314    NA    NA    NA    NA    NA    NA
##   1988 1351  6947 13112    NA    NA    NA    NA    NA    NA    NA
##   1989 3133  5395    NA    NA    NA    NA    NA    NA    NA    NA
##   1990 2063    NA    NA    NA    NA    NA    NA    NA    NA    NA

The generic plot function can be used to plot the data.

plot(RAA/1000,  main="Claims development by origin year",
     ylab="Claims (in thousands)", las=1)

It is possible to create a lattice plot using the argument lattice=TRUE inside plot fucntion.

plot(RAA/1000, lattice=TRUE, main = "Claims development by origin year")

Chain-ladder method

Example 1

In this example we are using the data from the video https://youtu.be/KANe-_28j0E.

x <- triangle("2015" = c(34871, 38358, 40276, 41082, 40671),
              "2016" = c(38154, 41969, 44068, 44949),
              "2017" = c(29425, 36781, 39356),
              "2018" = c(40876, 44964),
              "2019" = c(42776))

Example 2

In this example we are using the data from: https://www.uio.no/studier/emner/matnat/math/STK4540/h14/lectures/chain-ladder-metode.pdf

x <- triangle("2005" = c(1232, 2178, 2698, 3420, 3736, 3901, 3949, 3963),
              "2006" = c(1469, 2670, 3378, 4223, 4684, 4919, 4975),
              "2007" = c(1652, 3068, 4027, 4981, 5586, 5873),
              "2008" = c(1831, 3465, 4589, 5676, 6401),
              "2009" = c(2074, 3993, 5323, 6563),
              "2010" = c(2434, 4697, 6358),
              "2011" = c(2810, 4918),
              "2012" = c(3072))
clm <- function(x) {
  n <- ncol(x)
  res <- numeric()
  for (i in 1:(n-1)) {
    sub_mat <- x[1:(n-i), i:(i+1)]
    if (!is.matrix(sub_mat))
      sub_mat <- matrix(sub_mat, nrow=1)
    w <- colSums(sub_mat)
    res <- append(res, w[2] / w[1])
  }
  names(res) <- 2:n
  res
}

To obtain the clm we can use

clms <- clm(x)
clms
##        2        3        4        5        6        7        8 
## 1.850763 1.313985 1.242218 1.115137 1.049050 1.011791 1.003545
ata(x)
##       dev
## origin   1-2   2-3   3-4   4-5   5-6   6-7   7-8
##   2005 1.768 1.239 1.268 1.092 1.044 1.012 1.004
##   2006 1.818 1.265 1.250 1.109 1.050 1.011    NA
##   2007 1.857 1.313 1.237 1.121 1.051    NA    NA
##   2008 1.892 1.324 1.237 1.128    NA    NA    NA
##   2009 1.925 1.333 1.233    NA    NA    NA    NA
##   2010 1.930 1.354    NA    NA    NA    NA    NA
##   2011 1.750    NA    NA    NA    NA    NA    NA
##   smpl 1.849 1.305 1.245 1.113 1.049 1.012 1.004
##   vwtd 1.851 1.314 1.242 1.115 1.049 1.012 1.004

Mack chain-ladder

This method estimates the standard errors of the chain-ladder forecast.

mack <- MackChainLadder(RAA, est.sigma="Mack")
mack
## MackChainLadder(Triangle = RAA, est.sigma = "Mack")
## 
##      Latest Dev.To.Date Ultimate   IBNR Mack.S.E CV(IBNR)
## 1981 18,834       1.000   18,834      0        0      NaN
## 1982 16,704       0.991   16,858    154      206    1.339
## 1983 23,466       0.974   24,083    617      623    1.010
## 1984 27,067       0.943   28,703  1,636      747    0.457
## 1985 26,180       0.905   28,927  2,747    1,469    0.535
## 1986 15,852       0.813   19,501  3,649    2,002    0.549
## 1987 12,314       0.694   17,749  5,435    2,209    0.406
## 1988 13,112       0.546   24,019 10,907    5,358    0.491
## 1989  5,395       0.336   16,045 10,650    6,333    0.595
## 1990  2,063       0.112   18,402 16,339   24,566    1.503
## 
##               Totals
## Latest:   160,987.00
## Dev:            0.76
## Ultimate: 213,122.23
## IBNR:      52,135.23
## Mack.S.E   26,909.01
## CV(IBNR):       0.52

We can observe the estimated values using:

mack$FullTriangle
##       dev
## origin    1         2         3        4        5        6        7        8
##   1981 5012  8269.000 10907.000 11805.00 13539.00 16181.00 18009.00 18608.00
##   1982  106  4285.000  5396.000 10666.00 13782.00 15599.00 15496.00 16169.00
##   1983 3410  8992.000 13873.000 16141.00 18735.00 22214.00 22863.00 23466.00
##   1984 5655 11555.000 15766.000 21266.00 23425.00 26083.00 27067.00 27967.34
##   1985 1092  9565.000 15836.000 22169.00 25955.00 26180.00 27277.85 28185.21
##   1986 1513  6445.000 11702.000 12935.00 15852.00 17649.38 18389.50 19001.20
##   1987  557  4020.000 10946.000 12314.00 14428.00 16063.92 16737.55 17294.30
##   1988 1351  6947.000 13112.000 16663.88 19524.65 21738.45 22650.05 23403.47
##   1989 3133  5395.000  8758.905 11131.59 13042.60 14521.43 15130.38 15633.68
##   1990 2063  6187.677 10045.834 12767.13 14958.92 16655.04 17353.46 17930.70
##       dev
## origin        9       10
##   1981 18662.00 18834.00
##   1982 16704.00 16857.95
##   1983 23863.43 24083.37
##   1984 28441.01 28703.14
##   1985 28662.57 28926.74
##   1986 19323.01 19501.10
##   1987 17587.21 17749.30
##   1988 23799.84 24019.19
##   1989 15898.45 16044.98
##   1990 18234.38 18402.44

We can plot the estimations with a confidence level using the next code.

plot(mack, lattice=TRUE)

We can check the Mack’s assumptions using the plot function.

plot(mack)

Using glm to estimate claims

Hola Daniel. Por favor me ayuda a completar esta sección.