The LR test is only approximate for small to moderate sample sizes when testing fixed effects in GLMMs, for a more accurate answer you can use simulation (“parametric bootstrap”).
nbfit3 <- glmmTMB(count ~ 0 + spp + DOP + Wtemp + (1|site),
Salamanders, family="nbinom2") #null model
nbfit4 <- update(nbfit3, . ~ . + mined + spp:mined) #alternate model
LRobs <- 2*logLik(nbfit4) - 2*logLik(nbfit3) #observed test stat
nSims <- 1000
LR <- rep(NA,nSims)
for(i in 1:nSims){
simCount <- simulate(nbfit3)$sim_1 #simulate data under the null
tryCatch({
null <- glmmTMB(simCount ~ 0 + spp + DOP + Wtemp + (1|site),
Salamanders, family="nbinom2")
alt <- update(null, . ~ . + mined + spp:mined)
LR[i] <- 2*logLik(alt) - 2*logLik(null)
},
warning = function(w) {LR[i] = NA},
error=function(e) {LR[i] = NA}) #if model doesn't converge, LR = NA
}
p <- mean(LR > LRobs,na.rm=TRUE) #P-value
## [1] 0.01