Overview

This is an R Markdown Notebook to illustrate how to retrieve a dataset from the EcoSIS spectral database, choose the “optimal” number of plsr components, and fit a plsr model for leaf nitrogen content (Narea, g/m2)

Getting Started

Load libraries

list.of.packages <- c("pls","dplyr","here","plotrix","ggplot2","gridExtra","spectratrait")
invisible(lapply(list.of.packages, library, character.only = TRUE))

Attaching package: ‘pls’

The following object is masked from ‘package:stats’:

    loadings


Attaching package: ‘dplyr’

The following objects are masked from ‘package:stats’:

    filter, lag

The following objects are masked from ‘package:base’:

    intersect, setdiff, setequal, union

here() starts at /Users/sserbin/Data/GitHub/spectratrait

Attaching package: ‘gridExtra’

The following object is masked from ‘package:dplyr’:

    combine

Setup other functions and options

### Setup other functions and options
# not in
`%notin%` <- Negate(`%in%`)

# Script options
pls::pls.options(plsralg = "oscorespls")
pls::pls.options("plsralg")
$plsralg
[1] "oscorespls"
# Default par options
opar <- par(no.readonly = T)

# What is the target variable?
inVar <- "Narea_g_m2"

# What is the source dataset from EcoSIS?
ecosis_id <- "9db4c5a2-7eac-4e1e-8859-009233648e89"

# Specify output directory, output_dir 
# Options: 
# tempdir - use a OS-specified temporary directory 
# user defined PATH - e.g. "~/scratch/PLSR"
output_dir <- "tempdir"

Set working directory (scratch space)

The working directory was changed to /private/var/folders/xp/h3k9vf3n2jx181ts786_yjrn9c2gjq/T/Rtmpy2SPRe inside a notebook chunk. The working directory will be reset when the chunk is finished running. Use the knitr root.dir option in the setup chunk to change the working directory for notebook chunks.
[1] "/private/var/folders/xp/h3k9vf3n2jx181ts786_yjrn9c2gjq/T/Rtmpy2SPRe"

Grab data from EcoSIS

print(paste0("Output directory: ",getwd()))  # check wd
[1] "Output directory: /Users/sserbin/Data/GitHub/spectratrait/vignettes"
dat_raw <- spectratrait::get_ecosis_data(ecosis_id = ecosis_id)
[1] "**** Downloading Ecosis data ****"
Downloading data...

── Column specification ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
cols(
  .default = col_double(),
  `Latin Species` = col_character(),
  ids = col_character(),
  `plot code` = col_character(),
  `species code` = col_character()
)
ℹ Use `spec()` for the full column specifications.

Download complete!
head(dat_raw)
names(dat_raw)[1:40]
 [1] "Cw/EWT (cm3/cm2)"                               "Latin Species"                                 
 [3] "Leaf area (mm2)"                                "Leaf calcium content per leaf area (mg/mm2)"   
 [5] "Leaf magnesium content per leaf area (mg/mm2)"  "Leaf mass per area (g/cm2)"                    
 [7] "Leaf nitrogen content per leaf area (mg/mm2)"   "Leaf phosphorus content per leaf area (mg/mm2)"
 [9] "Leaf potassium content per leaf area (mg/mm2)"  "Plant height vegetative (cm)"                  
[11] "ids"                                            "plot code"                                     
[13] "species code"                                   "350"                                           
[15] "351"                                            "352"                                           
[17] "353"                                            "354"                                           
[19] "355"                                            "356"                                           
[21] "357"                                            "358"                                           
[23] "359"                                            "360"                                           
[25] "361"                                            "362"                                           
[27] "363"                                            "364"                                           
[29] "365"                                            "366"                                           
[31] "367"                                            "368"                                           
[33] "369"                                            "370"                                           
[35] "371"                                            "372"                                           
[37] "373"                                            "374"                                           
[39] "375"                                            "376"                                           

Create full plsr dataset

### Create plsr dataset
Start.wave <- 500
End.wave <- 2400
wv <- seq(Start.wave,End.wave,1)
Spectra <- as.matrix(dat_raw[,names(dat_raw) %in% wv])
colnames(Spectra) <- c(paste0("Wave_",wv))
sample_info <- dat_raw[,names(dat_raw) %notin% seq(350,2500,1)]
head(sample_info)

sample_info2 <- sample_info %>%
  select(Plant_Species=`Latin Species`,Species_Code=`species code`,Plot=`plot code`,
         Narea_mg_mm2=`Leaf nitrogen content per leaf area (mg/mm2)`)
sample_info2 <- sample_info2 %>%
#  mutate(Narea_g_m2=Narea_mg_mm2*(0.001/1e-6)) # based on orig units should be this but conversion wrong
  mutate(Narea_g_m2=Narea_mg_mm2*100) # this assumes orig units were g/mm2 or mg/cm2
head(sample_info2)

plsr_data <- data.frame(sample_info2,Spectra)
rm(sample_info,sample_info2,Spectra)

Example data cleaning.

#### End user needs to do what's appropriate for their data.  This may be an iterative process.
# Keep only complete rows of inVar and spec data before fitting
plsr_data <- plsr_data[complete.cases(plsr_data[,names(plsr_data) %in% 
                                                  c(inVar,paste0("Wave_",wv))]),]

Create cal/val datasets

### Create cal/val datasets
## Make a stratified random sampling in the strata USDA_Species_Code and Domain

method <- "dplyr" #base/dplyr
# base R - a bit slow
# dplyr - much faster
split_data <- spectratrait::create_data_split(dataset=plsr_data, approach=method, split_seed=1245565, 
                                              prop=0.8, group_variables="Species_Code")
names(split_data)
[1] "cal_data" "val_data"
cal.plsr.data <- split_data$cal_data
head(cal.plsr.data)[1:8]
val.plsr.data <- split_data$val_data
head(val.plsr.data)[1:8]
rm(split_data)

# Datasets:
print(paste("Cal observations: ",dim(cal.plsr.data)[1],sep=""))
[1] "Cal observations: 183"
print(paste("Val observations: ",dim(val.plsr.data)[1],sep=""))
[1] "Val observations: 73"
cal_hist_plot <- qplot(cal.plsr.data[,paste0(inVar)],geom="histogram",
                       main = paste0("Cal. Histogram for ",inVar),
                       xlab = paste0(inVar),ylab = "Count",fill=I("grey50"),col=I("black"),
                       alpha=I(.7))
val_hist_plot <- qplot(val.plsr.data[,paste0(inVar)],geom="histogram",
                       main = paste0("Val. Histogram for ",inVar),
                       xlab = paste0(inVar),ylab = "Count",fill=I("grey50"),col=I("black"),
                       alpha=I(.7))
histograms <- grid.arrange(cal_hist_plot, val_hist_plot, ncol=2)

ggsave(filename = file.path(outdir,paste0(inVar,"_Cal_Val_Histograms.png")), plot = histograms, 
       device="png", width = 30, 
       height = 12, units = "cm",
       dpi = 300)
# output cal/val data
write.csv(cal.plsr.data,file=file.path(outdir,paste0(inVar,'_Cal_PLSR_Dataset.csv')),
          row.names=FALSE)
write.csv(val.plsr.data,file=file.path(outdir,paste0(inVar,'_Val_PLSR_Dataset.csv')),
          row.names=FALSE)

Create calibration and validation PLSR datasets

### Format PLSR data for model fitting 
cal_spec <- as.matrix(cal.plsr.data[, which(names(cal.plsr.data) %in% paste0("Wave_",wv))])
cal.plsr.data <- data.frame(cal.plsr.data[, which(names(cal.plsr.data) %notin% paste0("Wave_",wv))],
                            Spectra=I(cal_spec))
head(cal.plsr.data)[1:5]

val_spec <- as.matrix(val.plsr.data[, which(names(val.plsr.data) %in% paste0("Wave_",wv))])
val.plsr.data <- data.frame(val.plsr.data[, which(names(val.plsr.data) %notin% paste0("Wave_",wv))],
                            Spectra=I(val_spec))
head(val.plsr.data)[1:5]

plot cal and val spectra

par(mfrow=c(1,2)) # B, L, T, R
spectratrait::f.plot.spec(Z=cal.plsr.data$Spectra,wv=wv,plot_label="Calibration")
spectratrait::f.plot.spec(Z=val.plsr.data$Spectra,wv=wv,plot_label="Validation")

dev.copy(png,file.path(outdir,paste0(inVar,'_Cal_Val_Spectra.png')), 
         height=2500,width=4900, res=340)
quartz_off_screen 
                3 
dev.off();
quartz_off_screen 
                2 
par(mfrow=c(1,1))

Use Jackknife permutation to determine optimal number of components

### Use permutation to determine the optimal number of components
if(grepl("Windows", sessionInfo()$running)){
  pls.options(parallel = NULL)
} else {
  pls.options(parallel = parallel::detectCores()-1)
}

method <- "pls" #pls, firstPlateau, firstMin
random_seed <- 1245565
seg <- 50
maxComps <- 16
iterations <- 80
prop <- 0.70
if (method=="pls") {
  # pls package approach - faster but estimates more components....
  nComps <- spectratrait::find_optimal_components(dataset=cal.plsr.data, targetVariable=inVar, 
                                                  method=method, 
                                                  maxComps=maxComps, seg=seg, 
                                                  random_seed=random_seed)
  print(paste0("*** Optimal number of components: ", nComps))
} else {
  nComps <- spectratrait::find_optimal_components(dataset=cal.plsr.data, targetVariable=inVar,
                                                  method=method, 
                                                  maxComps=maxComps, iterations=iterations, 
                                                  seg=seg, prop=prop, 
                                                  random_seed=random_seed)
}
[1] "*** Identifying optimal number of PLSR components ***"
[1] "*** Running PLS permutation test ***"
[1] "*** Optimal number of components: 10"
dev.copy(png,file.path(outdir,paste0(paste0(inVar,"_PLSR_Component_Selection.png"))), 
         height=2800, width=3400,  res=340)
quartz_off_screen 
                3 
dev.off();
quartz_off_screen 
                2 

Fit final model

plsr.out <- plsr(as.formula(paste(inVar,"~","Spectra")),scale=FALSE,ncomp=nComps,validation="LOO",
                 trace=FALSE,data=cal.plsr.data)
fit <- plsr.out$fitted.values[,1,nComps]
pls.options(parallel = NULL)

# External validation fit stats
par(mfrow=c(1,2)) # B, L, T, R
pls::RMSEP(plsr.out, newdata = val.plsr.data)
(Intercept)      1 comps      2 comps      3 comps      4 comps      5 comps      6 comps      7 comps      8 comps      9 comps  
     0.5594       0.6034       0.5448       0.3842       0.3481       0.3027       0.2429       0.2268       0.2852       0.2818  
   10 comps  
     0.2780  
plot(pls::RMSEP(plsr.out,estimate=c("test"),newdata = val.plsr.data), main="MODEL RMSEP",
     xlab="Number of Components",ylab="Model Validation RMSEP",lty=1,col="black",cex=1.5,lwd=2)
box(lwd=2.2)

pls::R2(plsr.out, newdata = val.plsr.data)
(Intercept)      1 comps      2 comps      3 comps      4 comps      5 comps      6 comps      7 comps      8 comps      9 comps  
  -0.007544    -0.172296     0.044153     0.524579     0.609920     0.704963     0.809962     0.834383     0.738093     0.744325  
   10 comps  
   0.751224  
plot(pls::R2(plsr.out,estimate=c("test"),newdata = val.plsr.data), main="MODEL R2",
     xlab="Number of Components",ylab="Model Validation R2",lty=1,col="black",cex=1.5,lwd=2)
box(lwd=2.2)
dev.copy(png,file.path(outdir,paste0(paste0(inVar,"_Validation_RMSEP_R2_by_Component.png"))), 
         height=2800, width=4800,  res=340)
quartz_off_screen 
                3 
dev.off();
quartz_off_screen 
                2 
par(opar)

PLSR fit observed vs. predicted plot data

#calibration
cal.plsr.output <- data.frame(cal.plsr.data[, which(names(cal.plsr.data) %notin% "Spectra")],
                              PLSR_Predicted=fit,
                              PLSR_CV_Predicted=as.vector(plsr.out$validation$pred[,,nComps]))
cal.plsr.output <- cal.plsr.output %>%
  mutate(PLSR_CV_Residuals = PLSR_CV_Predicted-get(inVar))
head(cal.plsr.output)
cal.R2 <- round(pls::R2(plsr.out,intercept=F)[[1]][nComps],2)
cal.RMSEP <- round(sqrt(mean(cal.plsr.output$PLSR_CV_Residuals^2)),2)

val.plsr.output <- data.frame(val.plsr.data[, which(names(val.plsr.data) %notin% "Spectra")],
                              PLSR_Predicted=as.vector(predict(plsr.out, 
                                                               newdata = val.plsr.data, 
                                                               ncomp=nComps, type="response")[,,1]))
val.plsr.output <- val.plsr.output %>%
  mutate(PLSR_Residuals = PLSR_Predicted-get(inVar))
head(val.plsr.output)
val.R2 <- round(pls::R2(plsr.out,newdata=val.plsr.data,intercept=F)[[1]][nComps],2)
val.RMSEP <- round(sqrt(mean(val.plsr.output$PLSR_Residuals^2)),2)

rng_quant <- quantile(cal.plsr.output[,inVar], probs = c(0.001, 0.999))
cal_scatter_plot <- ggplot(cal.plsr.output, aes(x=PLSR_CV_Predicted, y=get(inVar))) + 
  theme_bw() + geom_point() + geom_abline(intercept = 0, slope = 1, color="dark grey", 
                                          linetype="dashed", size=1.5) + xlim(rng_quant[1], 
                                                                              rng_quant[2]) + 
  ylim(rng_quant[1], rng_quant[2]) +
  labs(x=paste0("Predicted ", paste(inVar), " (units)"),
       y=paste0("Observed ", paste(inVar), " (units)"),
       title=paste0("Calibration: ", paste0("Rsq = ", cal.R2), "; ", paste0("RMSEP = ", 
                                                                            cal.RMSEP))) +
  theme(axis.text=element_text(size=18), legend.position="none",
        axis.title=element_text(size=20, face="bold"), 
        axis.text.x = element_text(angle = 0,vjust = 0.5),
        panel.border = element_rect(linetype = "solid", fill = NA, size=1.5))

cal_resid_histogram <- ggplot(cal.plsr.output, aes(x=PLSR_CV_Residuals)) +
  geom_histogram(alpha=.5, position="identity") + 
  geom_vline(xintercept = 0, color="black", 
             linetype="dashed", size=1) + theme_bw() + 
  theme(axis.text=element_text(size=18), legend.position="none",
        axis.title=element_text(size=20, face="bold"), 
        axis.text.x = element_text(angle = 0,vjust = 0.5),
        panel.border = element_rect(linetype = "solid", fill = NA, size=1.5))

rng_quant <- quantile(val.plsr.output[,inVar], probs = c(0.001, 0.999))
val_scatter_plot <- ggplot(val.plsr.output, aes(x=PLSR_Predicted, y=get(inVar))) + 
  theme_bw() + geom_point() + geom_abline(intercept = 0, slope = 1, color="dark grey", 
                                          linetype="dashed", size=1.5) + xlim(rng_quant[1], 
                                                                              rng_quant[2]) + 
  ylim(rng_quant[1], rng_quant[2]) +
  labs(x=paste0("Predicted ", paste(inVar), " (units)"),
       y=paste0("Observed ", paste(inVar), " (units)"),
       title=paste0("Validation: ", paste0("Rsq = ", val.R2), "; ", paste0("RMSEP = ", 
                                                                           val.RMSEP))) +
  theme(axis.text=element_text(size=18), legend.position="none",
        axis.title=element_text(size=20, face="bold"), 
        axis.text.x = element_text(angle = 0,vjust = 0.5),
        panel.border = element_rect(linetype = "solid", fill = NA, size=1.5))

val_resid_histogram <- ggplot(val.plsr.output, aes(x=PLSR_Residuals)) +
  geom_histogram(alpha=.5, position="identity") + 
  geom_vline(xintercept = 0, color="black", 
             linetype="dashed", size=1) + theme_bw() + 
  theme(axis.text=element_text(size=18), legend.position="none",
        axis.title=element_text(size=20, face="bold"), 
        axis.text.x = element_text(angle = 0,vjust = 0.5),
        panel.border = element_rect(linetype = "solid", fill = NA, size=1.5))

# plot cal/val side-by-side
scatterplots <- grid.arrange(cal_scatter_plot, val_scatter_plot, cal_resid_histogram, 
                             val_resid_histogram, nrow=2,ncol=2)

ggsave(filename = file.path(outdir,paste0(inVar,"_Cal_Val_Scatterplots.png")), 
       plot = scatterplots, device="png", 
       width = 32, 
       height = 30, units = "cm",
       dpi = 300)

Generate Coefficient and VIP plots

vips <- spectratrait::VIP(plsr.out)[nComps,]
par(mfrow=c(2,1))
plot(plsr.out, plottype = "coef",xlab="Wavelength (nm)",
     ylab="Regression coefficients",legendpos = "bottomright",
     ncomp=nComps,lwd=2)
box(lwd=2.2)
plot(seq(Start.wave,End.wave,1),vips,xlab="Wavelength (nm)",ylab="VIP",cex=0.01)
lines(seq(Start.wave,End.wave,1),vips,lwd=3)
abline(h=0.8,lty=2,col="dark grey")
box(lwd=2.2)
dev.copy(png,file.path(outdir,paste0(inVar,'_Coefficient_VIP_plot.png')), 
         height=3100, width=4100, res=340)
quartz_off_screen 
                3 
dev.off();
quartz_off_screen 
                2 

Jackknife validation

if(grepl("Windows", sessionInfo()$running)){
  pls.options(parallel =NULL)
} else {
  pls.options(parallel = parallel::detectCores()-1)
}

jk.plsr.out <- pls::plsr(as.formula(paste(inVar,"~","Spectra")), scale=FALSE, 
                         center=TRUE, ncomp=nComps, validation="LOO", trace=FALSE, 
                         jackknife=TRUE, 
                         data=cal.plsr.data)
pls.options(parallel = NULL)

Jackknife_coef <- spectratrait::f.coef.valid(plsr.out = jk.plsr.out, data_plsr = cal.plsr.data, 
                               ncomp = nComps, inVar=inVar)
Jackknife_intercept <- Jackknife_coef[1,,,]
Jackknife_coef <- Jackknife_coef[2:dim(Jackknife_coef)[1],,,]

interval <- c(0.025,0.975)
Jackknife_Pred <- val.plsr.data$Spectra %*% Jackknife_coef + 
  matrix(rep(Jackknife_intercept, length(val.plsr.data[,inVar])), byrow=TRUE, 
         ncol=length(Jackknife_intercept))
Interval_Conf <- apply(X = Jackknife_Pred, MARGIN = 1, FUN = quantile, 
                       probs=c(interval[1], interval[2]))
sd_mean <- apply(X = Jackknife_Pred, MARGIN = 1, FUN =sd)
sd_res <- sd(val.plsr.output$PLSR_Residuals)
sd_tot <- sqrt(sd_mean^2+sd_res^2)
val.plsr.output$LCI <- Interval_Conf[1,]
val.plsr.output$UCI <- Interval_Conf[2,]
val.plsr.output$LPI <- val.plsr.output$PLSR_Predicted-1.96*sd_tot
val.plsr.output$UPI <- val.plsr.output$PLSR_Predicted+1.96*sd_tot
head(val.plsr.output)
val.plsr.output$LPI <- val.plsr.output$PLSR_Predicted-1.96*sd_tot
val.plsr.output$UPI <- val.plsr.output$PLSR_Predicted+1.96*sd_tot
head(val.plsr.output)

Jackknife coefficient plot

spectratrait::f.plot.coef(Z = t(Jackknife_coef), wv = wv, 
            plot_label="Jackknife regression coefficients",position = 'bottomleft')
abline(h=0,lty=2,col="grey50")
box(lwd=2.2)
dev.copy(png,file.path(outdir,paste0(inVar,'_Jackknife_Regression_Coefficients.png')), 
         height=2100, width=3800, res=340)
quartz_off_screen 
                3 
dev.off();
quartz_off_screen 
                2 

Jackknife validation plot

rmsep_percrmsep <- spectratrait::percent_rmse(plsr_dataset = val.plsr.output, 
                                              inVar = inVar, 
                                              residuals = val.plsr.output$PLSR_Residuals, 
                                              range="full")
RMSEP <- rmsep_percrmsep$rmse
perc_RMSEP <- rmsep_percrmsep$perc_rmse
r2 <- round(pls::R2(plsr.out, newdata = val.plsr.data,intercept=F)$val[nComps],2)
expr <- vector("expression", 3)
expr[[1]] <- bquote(R^2==.(r2))
expr[[2]] <- bquote(RMSEP==.(round(RMSEP,2)))
expr[[3]] <- bquote("%RMSEP"==.(round(perc_RMSEP,2)))
rng_vals <- c(min(val.plsr.output$LPI), max(val.plsr.output$UPI))
par(mfrow=c(1,1), mar=c(4.2,5.3,1,0.4), oma=c(0, 0.1, 0, 0.2))
plotrix::plotCI(val.plsr.output$PLSR_Predicted,val.plsr.output[,inVar], 
       li=val.plsr.output$LPI, ui=val.plsr.output$UPI, gap=0.009,sfrac=0.004, 
       lwd=1.6, xlim=c(rng_vals[1], rng_vals[2]), ylim=c(rng_vals[1], rng_vals[2]), 
       err="x", pch=21, col="black", pt.bg=scales::alpha("grey70",0.7), scol="grey50",
       cex=2, xlab=paste0("Predicted ", paste(inVar), " (units)"),
       ylab=paste0("Observed ", paste(inVar), " (units)"),
       cex.axis=1.5,cex.lab=1.8)
abline(0,1,lty=2,lw=2)
legend("topleft", legend=expr, bty="n", cex=1.5)
box(lwd=2.2)
dev.copy(png,file.path(outdir,paste0(inVar,"_PLSR_Validation_Scatterplot.png")), 
         height=2800, width=3200,  res=340)
quartz_off_screen 
                3 
dev.off();
quartz_off_screen 
                2 

Output jackknife results

out.jk.coefs <- data.frame(Iteration=seq(1,length(Jackknife_intercept),1),
                           Intercept=Jackknife_intercept,t(Jackknife_coef))
head(out.jk.coefs)[1:6]
write.csv(out.jk.coefs,file=file.path(outdir,
                                      paste0(inVar,
                                             '_Jackkife_PLSR_Coefficients.csv')),
          row.names=FALSE)

Create core PLSR outputs

print(paste("Output directory: ", outdir))
[1] "Output directory:  /var/folders/xp/h3k9vf3n2jx181ts786_yjrn9c2gjq/T//Rtmpy2SPRe"
# Observed versus predicted
write.csv(cal.plsr.output,file=file.path(outdir,
                                         paste0(inVar,'_Observed_PLSR_CV_Pred_',
                                                nComps,'comp.csv')),
          row.names=FALSE)

# Validation data
write.csv(val.plsr.output,file=file.path(outdir,
                                         paste0(inVar,'_Validation_PLSR_Pred_',
                                                nComps,'comp.csv')),
          row.names=FALSE)

# Model coefficients
coefs <- coef(plsr.out,ncomp=nComps,intercept=TRUE)
write.csv(coefs,file=file.path(outdir,
                               paste0(inVar,'_PLSR_Coefficients_',
                                      nComps,'comp.csv')),
          row.names=TRUE)

# PLSR VIP
write.csv(vips,file=file.path(outdir,
                              paste0(inVar,'_PLSR_VIPs_',
                                     nComps,'comp.csv')))

Confirm files were written to temp space

print("**** PLSR output files: ")
[1] "**** PLSR output files: "
print(list.files(outdir)[grep(pattern = inVar, list.files(outdir))])
 [1] "Narea_g_m2_Cal_PLSR_Dataset.csv"                  "Narea_g_m2_Cal_Val_Histograms.png"               
 [3] "Narea_g_m2_Cal_Val_Scatterplots.png"              "Narea_g_m2_Cal_Val_Spectra.png"                  
 [5] "Narea_g_m2_Coefficient_VIP_plot.png"              "Narea_g_m2_Jackkife_PLSR_Coefficients.csv"       
 [7] "Narea_g_m2_Jackknife_Regression_Coefficients.png" "Narea_g_m2_Observed_PLSR_CV_Pred_10comp.csv"     
 [9] "Narea_g_m2_PLSR_Coefficients_10comp.csv"          "Narea_g_m2_PLSR_Component_Selection.png"         
[11] "Narea_g_m2_PLSR_Validation_Scatterplot.png"       "Narea_g_m2_PLSR_VIPs_10comp.csv"                 
[13] "Narea_g_m2_Val_PLSR_Dataset.csv"                  "Narea_g_m2_Validation_PLSR_Pred_10comp.csv"      
[15] "Narea_g_m2_Validation_RMSEP_R2_by_Component.png" 
LS0tCnRpdGxlOiBTcGVjdHJhLXRyYWl0IFBMU1IgZXhhbXBsZSB1c2luZyBsZWFmLWxldmVsIHNwZWN0cmEgYW5kIGxlYWYgbml0cm9nZW4gY29udGVudCAoTmFyZWEsIGcvbTIpIGRhdGEgZnJvbSAzNiBzcGVjaWVzIGdyb3dpbmcgaW4gUm9zYSBydWdvc2EgaW52YWRlZCBjb2FzdGFsIGdyYXNzbGFuZCBjb21tdW5pdGllcyBpbiBCZWxnaXVtCmF1dGhvcjogIlNoYXduIFAuIFNlcmJpbiwgSnVsaWVuIExhbW91ciwgJiBKZXJlbWlhaCBBbmRlcnNvbiIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQKICBwZGZfZG9jdW1lbnQ6IGRlZmF1bHQKICBodG1sX2RvY3VtZW50OgogICAgZGZfcHJpbnQ6IHBhZ2VkCiAgZ2l0aHViX2RvY3VtZW50OiBkZWZhdWx0CnBhcmFtczoKICBkYXRlOiAhciBTeXMuRGF0ZSgpCi0tLQoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0UsIGVjaG89RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkKYGBgCgojIyMgT3ZlcnZpZXcKVGhpcyBpcyBhbiBbUiBNYXJrZG93bl0oaHR0cDovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbSkgTm90ZWJvb2sgdG8gaWxsdXN0cmF0ZSBob3cgdG8gcmV0cmlldmUgYSBkYXRhc2V0IGZyb20gdGhlIEVjb1NJUyBzcGVjdHJhbCBkYXRhYmFzZSwgY2hvb3NlIHRoZSAib3B0aW1hbCIgbnVtYmVyIG9mIHBsc3IgY29tcG9uZW50cywgYW5kIGZpdCBhIHBsc3IgbW9kZWwgZm9yIGxlYWYgbml0cm9nZW4gY29udGVudCAoTmFyZWEsIGcvbTIpCgojIyMgR2V0dGluZyBTdGFydGVkCiMjIyBMb2FkIGxpYnJhcmllcwpgYGB7ciwgZXZhbD1UUlVFLCBlY2hvPVRSVUV9Cmxpc3Qub2YucGFja2FnZXMgPC0gYygicGxzIiwiZHBseXIiLCJoZXJlIiwicGxvdHJpeCIsImdncGxvdDIiLCJncmlkRXh0cmEiLCJzcGVjdHJhdHJhaXQiKQppbnZpc2libGUobGFwcGx5KGxpc3Qub2YucGFja2FnZXMsIGxpYnJhcnksIGNoYXJhY3Rlci5vbmx5ID0gVFJVRSkpCmBgYAoKIyMjIFNldHVwIG90aGVyIGZ1bmN0aW9ucyBhbmQgb3B0aW9ucwpgYGB7ciwgZWNobz1UUlVFfQojIyMgU2V0dXAgb3RoZXIgZnVuY3Rpb25zIGFuZCBvcHRpb25zCiMgbm90IGluCmAlbm90aW4lYCA8LSBOZWdhdGUoYCVpbiVgKQoKIyBTY3JpcHQgb3B0aW9ucwpwbHM6OnBscy5vcHRpb25zKHBsc3JhbGcgPSAib3Njb3Jlc3BscyIpCnBsczo6cGxzLm9wdGlvbnMoInBsc3JhbGciKQoKIyBEZWZhdWx0IHBhciBvcHRpb25zCm9wYXIgPC0gcGFyKG5vLnJlYWRvbmx5ID0gVCkKCiMgV2hhdCBpcyB0aGUgdGFyZ2V0IHZhcmlhYmxlPwppblZhciA8LSAiTmFyZWFfZ19tMiIKCiMgV2hhdCBpcyB0aGUgc291cmNlIGRhdGFzZXQgZnJvbSBFY29TSVM/CmVjb3Npc19pZCA8LSAiOWRiNGM1YTItN2VhYy00ZTFlLTg4NTktMDA5MjMzNjQ4ZTg5IgoKIyBTcGVjaWZ5IG91dHB1dCBkaXJlY3RvcnksIG91dHB1dF9kaXIgCiMgT3B0aW9uczogCiMgdGVtcGRpciAtIHVzZSBhIE9TLXNwZWNpZmllZCB0ZW1wb3JhcnkgZGlyZWN0b3J5IAojIHVzZXIgZGVmaW5lZCBQQVRIIC0gZS5nLiAifi9zY3JhdGNoL1BMU1IiCm91dHB1dF9kaXIgPC0gInRlbXBkaXIiCmBgYAoKIyMjIFNldCB3b3JraW5nIGRpcmVjdG9yeSAoc2NyYXRjaCBzcGFjZSkKYGBge3IsIGVjaG89RkFMU0V9CmlmIChvdXRwdXRfZGlyPT0idGVtcGRpciIpIHsKICBvdXRkaXIgPC0gdGVtcGRpcigpCn0gZWxzZSB7CiAgaWYgKCEgZmlsZS5leGlzdHMob3V0cHV0X2RpcikpIGRpci5jcmVhdGUob3V0cHV0X2RpcixyZWN1cnNpdmU9VFJVRSkKICBvdXRkaXIgPC0gZmlsZS5wYXRoKHBhdGguZXhwYW5kKG91dHB1dF9kaXIpKQp9CnNldHdkKG91dGRpcikgIyBzZXQgd29ya2luZyBkaXJlY3RvcnkKZ2V0d2QoKSAgIyBjaGVjayB3ZApgYGAKCiMjIyBHcmFiIGRhdGEgZnJvbSBFY29TSVMKYGBge3IsIGVjaG89VFJVRX0KcHJpbnQocGFzdGUwKCJPdXRwdXQgZGlyZWN0b3J5OiAiLGdldHdkKCkpKSAgIyBjaGVjayB3ZApkYXRfcmF3IDwtIHNwZWN0cmF0cmFpdDo6Z2V0X2Vjb3Npc19kYXRhKGVjb3Npc19pZCA9IGVjb3Npc19pZCkKaGVhZChkYXRfcmF3KQpuYW1lcyhkYXRfcmF3KVsxOjQwXQpgYGAKCiMjIyBDcmVhdGUgZnVsbCBwbHNyIGRhdGFzZXQKYGBge3IsIGVjaG89VFJVRX0KIyMjIENyZWF0ZSBwbHNyIGRhdGFzZXQKU3RhcnQud2F2ZSA8LSA1MDAKRW5kLndhdmUgPC0gMjQwMAp3diA8LSBzZXEoU3RhcnQud2F2ZSxFbmQud2F2ZSwxKQpTcGVjdHJhIDwtIGFzLm1hdHJpeChkYXRfcmF3WyxuYW1lcyhkYXRfcmF3KSAlaW4lIHd2XSkKY29sbmFtZXMoU3BlY3RyYSkgPC0gYyhwYXN0ZTAoIldhdmVfIix3dikpCnNhbXBsZV9pbmZvIDwtIGRhdF9yYXdbLG5hbWVzKGRhdF9yYXcpICVub3RpbiUgc2VxKDM1MCwyNTAwLDEpXQpoZWFkKHNhbXBsZV9pbmZvKQoKc2FtcGxlX2luZm8yIDwtIHNhbXBsZV9pbmZvICU+JQogIHNlbGVjdChQbGFudF9TcGVjaWVzPWBMYXRpbiBTcGVjaWVzYCxTcGVjaWVzX0NvZGU9YHNwZWNpZXMgY29kZWAsUGxvdD1gcGxvdCBjb2RlYCwKICAgICAgICAgTmFyZWFfbWdfbW0yPWBMZWFmIG5pdHJvZ2VuIGNvbnRlbnQgcGVyIGxlYWYgYXJlYSAobWcvbW0yKWApCnNhbXBsZV9pbmZvMiA8LSBzYW1wbGVfaW5mbzIgJT4lCiMgIG11dGF0ZShOYXJlYV9nX20yPU5hcmVhX21nX21tMiooMC4wMDEvMWUtNikpICMgYmFzZWQgb24gb3JpZyB1bml0cyBzaG91bGQgYmUgdGhpcyBidXQgY29udmVyc2lvbiB3cm9uZwogIG11dGF0ZShOYXJlYV9nX20yPU5hcmVhX21nX21tMioxMDApICMgdGhpcyBhc3N1bWVzIG9yaWcgdW5pdHMgd2VyZSBnL21tMiBvciBtZy9jbTIKaGVhZChzYW1wbGVfaW5mbzIpCgpwbHNyX2RhdGEgPC0gZGF0YS5mcmFtZShzYW1wbGVfaW5mbzIsU3BlY3RyYSkKcm0oc2FtcGxlX2luZm8sc2FtcGxlX2luZm8yLFNwZWN0cmEpCmBgYAoKIyMjIyBFeGFtcGxlIGRhdGEgY2xlYW5pbmcuIApgYGB7ciwgZWNobz1UUlVFfQojIyMjIEVuZCB1c2VyIG5lZWRzIHRvIGRvIHdoYXQncyBhcHByb3ByaWF0ZSBmb3IgdGhlaXIgZGF0YS4gIFRoaXMgbWF5IGJlIGFuIGl0ZXJhdGl2ZSBwcm9jZXNzLgojIEtlZXAgb25seSBjb21wbGV0ZSByb3dzIG9mIGluVmFyIGFuZCBzcGVjIGRhdGEgYmVmb3JlIGZpdHRpbmcKcGxzcl9kYXRhIDwtIHBsc3JfZGF0YVtjb21wbGV0ZS5jYXNlcyhwbHNyX2RhdGFbLG5hbWVzKHBsc3JfZGF0YSkgJWluJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjKGluVmFyLHBhc3RlMCgiV2F2ZV8iLHd2KSldKSxdCmBgYAoKIyMjIENyZWF0ZSBjYWwvdmFsIGRhdGFzZXRzCmBgYHtyLCBmaWcuaGVpZ2h0ID0gNSwgZmlnLndpZHRoID0gMTIsIGVjaG89VFJVRX0KIyMjIENyZWF0ZSBjYWwvdmFsIGRhdGFzZXRzCiMjIE1ha2UgYSBzdHJhdGlmaWVkIHJhbmRvbSBzYW1wbGluZyBpbiB0aGUgc3RyYXRhIFVTREFfU3BlY2llc19Db2RlIGFuZCBEb21haW4KCm1ldGhvZCA8LSAiZHBseXIiICNiYXNlL2RwbHlyCiMgYmFzZSBSIC0gYSBiaXQgc2xvdwojIGRwbHlyIC0gbXVjaCBmYXN0ZXIKc3BsaXRfZGF0YSA8LSBzcGVjdHJhdHJhaXQ6OmNyZWF0ZV9kYXRhX3NwbGl0KGRhdGFzZXQ9cGxzcl9kYXRhLCBhcHByb2FjaD1tZXRob2QsIHNwbGl0X3NlZWQ9MTI0NTU2NSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwcm9wPTAuOCwgZ3JvdXBfdmFyaWFibGVzPSJTcGVjaWVzX0NvZGUiKQpuYW1lcyhzcGxpdF9kYXRhKQpjYWwucGxzci5kYXRhIDwtIHNwbGl0X2RhdGEkY2FsX2RhdGEKaGVhZChjYWwucGxzci5kYXRhKVsxOjhdCnZhbC5wbHNyLmRhdGEgPC0gc3BsaXRfZGF0YSR2YWxfZGF0YQpoZWFkKHZhbC5wbHNyLmRhdGEpWzE6OF0Kcm0oc3BsaXRfZGF0YSkKCiMgRGF0YXNldHM6CnByaW50KHBhc3RlKCJDYWwgb2JzZXJ2YXRpb25zOiAiLGRpbShjYWwucGxzci5kYXRhKVsxXSxzZXA9IiIpKQpwcmludChwYXN0ZSgiVmFsIG9ic2VydmF0aW9uczogIixkaW0odmFsLnBsc3IuZGF0YSlbMV0sc2VwPSIiKSkKCmNhbF9oaXN0X3Bsb3QgPC0gcXBsb3QoY2FsLnBsc3IuZGF0YVsscGFzdGUwKGluVmFyKV0sZ2VvbT0iaGlzdG9ncmFtIiwKICAgICAgICAgICAgICAgICAgICAgICBtYWluID0gcGFzdGUwKCJDYWwuIEhpc3RvZ3JhbSBmb3IgIixpblZhciksCiAgICAgICAgICAgICAgICAgICAgICAgeGxhYiA9IHBhc3RlMChpblZhcikseWxhYiA9ICJDb3VudCIsZmlsbD1JKCJncmV5NTAiKSxjb2w9SSgiYmxhY2siKSwKICAgICAgICAgICAgICAgICAgICAgICBhbHBoYT1JKC43KSkKdmFsX2hpc3RfcGxvdCA8LSBxcGxvdCh2YWwucGxzci5kYXRhWyxwYXN0ZTAoaW5WYXIpXSxnZW9tPSJoaXN0b2dyYW0iLAogICAgICAgICAgICAgICAgICAgICAgIG1haW4gPSBwYXN0ZTAoIlZhbC4gSGlzdG9ncmFtIGZvciAiLGluVmFyKSwKICAgICAgICAgICAgICAgICAgICAgICB4bGFiID0gcGFzdGUwKGluVmFyKSx5bGFiID0gIkNvdW50IixmaWxsPUkoImdyZXk1MCIpLGNvbD1JKCJibGFjayIpLAogICAgICAgICAgICAgICAgICAgICAgIGFscGhhPUkoLjcpKQpoaXN0b2dyYW1zIDwtIGdyaWQuYXJyYW5nZShjYWxfaGlzdF9wbG90LCB2YWxfaGlzdF9wbG90LCBuY29sPTIpCmdnc2F2ZShmaWxlbmFtZSA9IGZpbGUucGF0aChvdXRkaXIscGFzdGUwKGluVmFyLCJfQ2FsX1ZhbF9IaXN0b2dyYW1zLnBuZyIpKSwgcGxvdCA9IGhpc3RvZ3JhbXMsIAogICAgICAgZGV2aWNlPSJwbmciLCB3aWR0aCA9IDMwLCAKICAgICAgIGhlaWdodCA9IDEyLCB1bml0cyA9ICJjbSIsCiAgICAgICBkcGkgPSAzMDApCiMgb3V0cHV0IGNhbC92YWwgZGF0YQp3cml0ZS5jc3YoY2FsLnBsc3IuZGF0YSxmaWxlPWZpbGUucGF0aChvdXRkaXIscGFzdGUwKGluVmFyLCdfQ2FsX1BMU1JfRGF0YXNldC5jc3YnKSksCiAgICAgICAgICByb3cubmFtZXM9RkFMU0UpCndyaXRlLmNzdih2YWwucGxzci5kYXRhLGZpbGU9ZmlsZS5wYXRoKG91dGRpcixwYXN0ZTAoaW5WYXIsJ19WYWxfUExTUl9EYXRhc2V0LmNzdicpKSwKICAgICAgICAgIHJvdy5uYW1lcz1GQUxTRSkKYGBgCgojIyMgQ3JlYXRlIGNhbGlicmF0aW9uIGFuZCB2YWxpZGF0aW9uIFBMU1IgZGF0YXNldHMKYGBge3IsIGVjaG89VFJVRX0KIyMjIEZvcm1hdCBQTFNSIGRhdGEgZm9yIG1vZGVsIGZpdHRpbmcgCmNhbF9zcGVjIDwtIGFzLm1hdHJpeChjYWwucGxzci5kYXRhWywgd2hpY2gobmFtZXMoY2FsLnBsc3IuZGF0YSkgJWluJSBwYXN0ZTAoIldhdmVfIix3dikpXSkKY2FsLnBsc3IuZGF0YSA8LSBkYXRhLmZyYW1lKGNhbC5wbHNyLmRhdGFbLCB3aGljaChuYW1lcyhjYWwucGxzci5kYXRhKSAlbm90aW4lIHBhc3RlMCgiV2F2ZV8iLHd2KSldLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgU3BlY3RyYT1JKGNhbF9zcGVjKSkKaGVhZChjYWwucGxzci5kYXRhKVsxOjVdCgp2YWxfc3BlYyA8LSBhcy5tYXRyaXgodmFsLnBsc3IuZGF0YVssIHdoaWNoKG5hbWVzKHZhbC5wbHNyLmRhdGEpICVpbiUgcGFzdGUwKCJXYXZlXyIsd3YpKV0pCnZhbC5wbHNyLmRhdGEgPC0gZGF0YS5mcmFtZSh2YWwucGxzci5kYXRhWywgd2hpY2gobmFtZXModmFsLnBsc3IuZGF0YSkgJW5vdGluJSBwYXN0ZTAoIldhdmVfIix3dikpXSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIFNwZWN0cmE9SSh2YWxfc3BlYykpCmhlYWQodmFsLnBsc3IuZGF0YSlbMTo1XQpgYGAKCiMjIyBwbG90IGNhbCBhbmQgdmFsIHNwZWN0cmEKYGBge3IsIGZpZy5oZWlnaHQgPSA1LCBmaWcud2lkdGggPSAxMiwgZWNobz1UUlVFfQpwYXIobWZyb3c9YygxLDIpKSAjIEIsIEwsIFQsIFIKc3BlY3RyYXRyYWl0OjpmLnBsb3Quc3BlYyhaPWNhbC5wbHNyLmRhdGEkU3BlY3RyYSx3dj13dixwbG90X2xhYmVsPSJDYWxpYnJhdGlvbiIpCnNwZWN0cmF0cmFpdDo6Zi5wbG90LnNwZWMoWj12YWwucGxzci5kYXRhJFNwZWN0cmEsd3Y9d3YscGxvdF9sYWJlbD0iVmFsaWRhdGlvbiIpCgpkZXYuY29weShwbmcsZmlsZS5wYXRoKG91dGRpcixwYXN0ZTAoaW5WYXIsJ19DYWxfVmFsX1NwZWN0cmEucG5nJykpLCAKICAgICAgICAgaGVpZ2h0PTI1MDAsd2lkdGg9NDkwMCwgcmVzPTM0MCkKZGV2Lm9mZigpOwpwYXIobWZyb3c9YygxLDEpKQpgYGAKCiMjIyBVc2UgSmFja2tuaWZlIHBlcm11dGF0aW9uIHRvIGRldGVybWluZSBvcHRpbWFsIG51bWJlciBvZiBjb21wb25lbnRzCmBgYHtyLCBmaWcuaGVpZ2h0ID0gNiwgZmlnLndpZHRoID0gMTAsIGVjaG89VFJVRX0KIyMjIFVzZSBwZXJtdXRhdGlvbiB0byBkZXRlcm1pbmUgdGhlIG9wdGltYWwgbnVtYmVyIG9mIGNvbXBvbmVudHMKaWYoZ3JlcGwoIldpbmRvd3MiLCBzZXNzaW9uSW5mbygpJHJ1bm5pbmcpKXsKICBwbHMub3B0aW9ucyhwYXJhbGxlbCA9IE5VTEwpCn0gZWxzZSB7CiAgcGxzLm9wdGlvbnMocGFyYWxsZWwgPSBwYXJhbGxlbDo6ZGV0ZWN0Q29yZXMoKS0xKQp9CgptZXRob2QgPC0gInBscyIgI3BscywgZmlyc3RQbGF0ZWF1LCBmaXJzdE1pbgpyYW5kb21fc2VlZCA8LSAxMjQ1NTY1CnNlZyA8LSA1MAptYXhDb21wcyA8LSAxNgppdGVyYXRpb25zIDwtIDgwCnByb3AgPC0gMC43MAppZiAobWV0aG9kPT0icGxzIikgewogICMgcGxzIHBhY2thZ2UgYXBwcm9hY2ggLSBmYXN0ZXIgYnV0IGVzdGltYXRlcyBtb3JlIGNvbXBvbmVudHMuLi4uCiAgbkNvbXBzIDwtIHNwZWN0cmF0cmFpdDo6ZmluZF9vcHRpbWFsX2NvbXBvbmVudHMoZGF0YXNldD1jYWwucGxzci5kYXRhLCB0YXJnZXRWYXJpYWJsZT1pblZhciwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kPW1ldGhvZCwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWF4Q29tcHM9bWF4Q29tcHMsIHNlZz1zZWcsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJhbmRvbV9zZWVkPXJhbmRvbV9zZWVkKQogIHByaW50KHBhc3RlMCgiKioqIE9wdGltYWwgbnVtYmVyIG9mIGNvbXBvbmVudHM6ICIsIG5Db21wcykpCn0gZWxzZSB7CiAgbkNvbXBzIDwtIHNwZWN0cmF0cmFpdDo6ZmluZF9vcHRpbWFsX2NvbXBvbmVudHMoZGF0YXNldD1jYWwucGxzci5kYXRhLCB0YXJnZXRWYXJpYWJsZT1pblZhciwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZXRob2Q9bWV0aG9kLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtYXhDb21wcz1tYXhDb21wcywgaXRlcmF0aW9ucz1pdGVyYXRpb25zLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZWc9c2VnLCBwcm9wPXByb3AsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJhbmRvbV9zZWVkPXJhbmRvbV9zZWVkKQp9CmRldi5jb3B5KHBuZyxmaWxlLnBhdGgob3V0ZGlyLHBhc3RlMChwYXN0ZTAoaW5WYXIsIl9QTFNSX0NvbXBvbmVudF9TZWxlY3Rpb24ucG5nIikpKSwgCiAgICAgICAgIGhlaWdodD0yODAwLCB3aWR0aD0zNDAwLCAgcmVzPTM0MCkKZGV2Lm9mZigpOwpgYGAKCiMjIyBGaXQgZmluYWwgbW9kZWwKYGBge3IsIGZpZy5oZWlnaHQgPSA1LCBmaWcud2lkdGggPSAxMiwgZWNobz1UUlVFfQpwbHNyLm91dCA8LSBwbHNyKGFzLmZvcm11bGEocGFzdGUoaW5WYXIsIn4iLCJTcGVjdHJhIikpLHNjYWxlPUZBTFNFLG5jb21wPW5Db21wcyx2YWxpZGF0aW9uPSJMT08iLAogICAgICAgICAgICAgICAgIHRyYWNlPUZBTFNFLGRhdGE9Y2FsLnBsc3IuZGF0YSkKZml0IDwtIHBsc3Iub3V0JGZpdHRlZC52YWx1ZXNbLDEsbkNvbXBzXQpwbHMub3B0aW9ucyhwYXJhbGxlbCA9IE5VTEwpCgojIEV4dGVybmFsIHZhbGlkYXRpb24gZml0IHN0YXRzCnBhcihtZnJvdz1jKDEsMikpICMgQiwgTCwgVCwgUgpwbHM6OlJNU0VQKHBsc3Iub3V0LCBuZXdkYXRhID0gdmFsLnBsc3IuZGF0YSkKcGxvdChwbHM6OlJNU0VQKHBsc3Iub3V0LGVzdGltYXRlPWMoInRlc3QiKSxuZXdkYXRhID0gdmFsLnBsc3IuZGF0YSksIG1haW49Ik1PREVMIFJNU0VQIiwKICAgICB4bGFiPSJOdW1iZXIgb2YgQ29tcG9uZW50cyIseWxhYj0iTW9kZWwgVmFsaWRhdGlvbiBSTVNFUCIsbHR5PTEsY29sPSJibGFjayIsY2V4PTEuNSxsd2Q9MikKYm94KGx3ZD0yLjIpCgpwbHM6OlIyKHBsc3Iub3V0LCBuZXdkYXRhID0gdmFsLnBsc3IuZGF0YSkKcGxvdChwbHM6OlIyKHBsc3Iub3V0LGVzdGltYXRlPWMoInRlc3QiKSxuZXdkYXRhID0gdmFsLnBsc3IuZGF0YSksIG1haW49Ik1PREVMIFIyIiwKICAgICB4bGFiPSJOdW1iZXIgb2YgQ29tcG9uZW50cyIseWxhYj0iTW9kZWwgVmFsaWRhdGlvbiBSMiIsbHR5PTEsY29sPSJibGFjayIsY2V4PTEuNSxsd2Q9MikKYm94KGx3ZD0yLjIpCmRldi5jb3B5KHBuZyxmaWxlLnBhdGgob3V0ZGlyLHBhc3RlMChwYXN0ZTAoaW5WYXIsIl9WYWxpZGF0aW9uX1JNU0VQX1IyX2J5X0NvbXBvbmVudC5wbmciKSkpLCAKICAgICAgICAgaGVpZ2h0PTI4MDAsIHdpZHRoPTQ4MDAsICByZXM9MzQwKQpkZXYub2ZmKCk7CnBhcihvcGFyKQpgYGAKCiMjIyBQTFNSIGZpdCBvYnNlcnZlZCB2cy4gcHJlZGljdGVkIHBsb3QgZGF0YQpgYGB7ciwgZmlnLmhlaWdodCA9IDE1LCBmaWcud2lkdGggPSAxNSwgZWNobz1UUlVFfSAgCiNjYWxpYnJhdGlvbgpjYWwucGxzci5vdXRwdXQgPC0gZGF0YS5mcmFtZShjYWwucGxzci5kYXRhWywgd2hpY2gobmFtZXMoY2FsLnBsc3IuZGF0YSkgJW5vdGluJSAiU3BlY3RyYSIpXSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgUExTUl9QcmVkaWN0ZWQ9Zml0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBQTFNSX0NWX1ByZWRpY3RlZD1hcy52ZWN0b3IocGxzci5vdXQkdmFsaWRhdGlvbiRwcmVkWywsbkNvbXBzXSkpCmNhbC5wbHNyLm91dHB1dCA8LSBjYWwucGxzci5vdXRwdXQgJT4lCiAgbXV0YXRlKFBMU1JfQ1ZfUmVzaWR1YWxzID0gUExTUl9DVl9QcmVkaWN0ZWQtZ2V0KGluVmFyKSkKaGVhZChjYWwucGxzci5vdXRwdXQpCmNhbC5SMiA8LSByb3VuZChwbHM6OlIyKHBsc3Iub3V0LGludGVyY2VwdD1GKVtbMV1dW25Db21wc10sMikKY2FsLlJNU0VQIDwtIHJvdW5kKHNxcnQobWVhbihjYWwucGxzci5vdXRwdXQkUExTUl9DVl9SZXNpZHVhbHNeMikpLDIpCgp2YWwucGxzci5vdXRwdXQgPC0gZGF0YS5mcmFtZSh2YWwucGxzci5kYXRhWywgd2hpY2gobmFtZXModmFsLnBsc3IuZGF0YSkgJW5vdGluJSAiU3BlY3RyYSIpXSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgUExTUl9QcmVkaWN0ZWQ9YXMudmVjdG9yKHByZWRpY3QocGxzci5vdXQsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuZXdkYXRhID0gdmFsLnBsc3IuZGF0YSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5jb21wPW5Db21wcywgdHlwZT0icmVzcG9uc2UiKVssLDFdKSkKdmFsLnBsc3Iub3V0cHV0IDwtIHZhbC5wbHNyLm91dHB1dCAlPiUKICBtdXRhdGUoUExTUl9SZXNpZHVhbHMgPSBQTFNSX1ByZWRpY3RlZC1nZXQoaW5WYXIpKQpoZWFkKHZhbC5wbHNyLm91dHB1dCkKdmFsLlIyIDwtIHJvdW5kKHBsczo6UjIocGxzci5vdXQsbmV3ZGF0YT12YWwucGxzci5kYXRhLGludGVyY2VwdD1GKVtbMV1dW25Db21wc10sMikKdmFsLlJNU0VQIDwtIHJvdW5kKHNxcnQobWVhbih2YWwucGxzci5vdXRwdXQkUExTUl9SZXNpZHVhbHNeMikpLDIpCgpybmdfcXVhbnQgPC0gcXVhbnRpbGUoY2FsLnBsc3Iub3V0cHV0WyxpblZhcl0sIHByb2JzID0gYygwLjAwMSwgMC45OTkpKQpjYWxfc2NhdHRlcl9wbG90IDwtIGdncGxvdChjYWwucGxzci5vdXRwdXQsIGFlcyh4PVBMU1JfQ1ZfUHJlZGljdGVkLCB5PWdldChpblZhcikpKSArIAogIHRoZW1lX2J3KCkgKyBnZW9tX3BvaW50KCkgKyBnZW9tX2FibGluZShpbnRlcmNlcHQgPSAwLCBzbG9wZSA9IDEsIGNvbG9yPSJkYXJrIGdyZXkiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGluZXR5cGU9ImRhc2hlZCIsIHNpemU9MS41KSArIHhsaW0ocm5nX3F1YW50WzFdLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcm5nX3F1YW50WzJdKSArIAogIHlsaW0ocm5nX3F1YW50WzFdLCBybmdfcXVhbnRbMl0pICsKICBsYWJzKHg9cGFzdGUwKCJQcmVkaWN0ZWQgIiwgcGFzdGUoaW5WYXIpLCAiICh1bml0cykiKSwKICAgICAgIHk9cGFzdGUwKCJPYnNlcnZlZCAiLCBwYXN0ZShpblZhciksICIgKHVuaXRzKSIpLAogICAgICAgdGl0bGU9cGFzdGUwKCJDYWxpYnJhdGlvbjogIiwgcGFzdGUwKCJSc3EgPSAiLCBjYWwuUjIpLCAiOyAiLCBwYXN0ZTAoIlJNU0VQID0gIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjYWwuUk1TRVApKSkgKwogIHRoZW1lKGF4aXMudGV4dD1lbGVtZW50X3RleHQoc2l6ZT0xOCksIGxlZ2VuZC5wb3NpdGlvbj0ibm9uZSIsCiAgICAgICAgYXhpcy50aXRsZT1lbGVtZW50X3RleHQoc2l6ZT0yMCwgZmFjZT0iYm9sZCIpLCAKICAgICAgICBheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDAsdmp1c3QgPSAwLjUpLAogICAgICAgIHBhbmVsLmJvcmRlciA9IGVsZW1lbnRfcmVjdChsaW5ldHlwZSA9ICJzb2xpZCIsIGZpbGwgPSBOQSwgc2l6ZT0xLjUpKQoKY2FsX3Jlc2lkX2hpc3RvZ3JhbSA8LSBnZ3Bsb3QoY2FsLnBsc3Iub3V0cHV0LCBhZXMoeD1QTFNSX0NWX1Jlc2lkdWFscykpICsKICBnZW9tX2hpc3RvZ3JhbShhbHBoYT0uNSwgcG9zaXRpb249ImlkZW50aXR5IikgKyAKICBnZW9tX3ZsaW5lKHhpbnRlcmNlcHQgPSAwLCBjb2xvcj0iYmxhY2siLCAKICAgICAgICAgICAgIGxpbmV0eXBlPSJkYXNoZWQiLCBzaXplPTEpICsgdGhlbWVfYncoKSArIAogIHRoZW1lKGF4aXMudGV4dD1lbGVtZW50X3RleHQoc2l6ZT0xOCksIGxlZ2VuZC5wb3NpdGlvbj0ibm9uZSIsCiAgICAgICAgYXhpcy50aXRsZT1lbGVtZW50X3RleHQoc2l6ZT0yMCwgZmFjZT0iYm9sZCIpLCAKICAgICAgICBheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDAsdmp1c3QgPSAwLjUpLAogICAgICAgIHBhbmVsLmJvcmRlciA9IGVsZW1lbnRfcmVjdChsaW5ldHlwZSA9ICJzb2xpZCIsIGZpbGwgPSBOQSwgc2l6ZT0xLjUpKQoKcm5nX3F1YW50IDwtIHF1YW50aWxlKHZhbC5wbHNyLm91dHB1dFssaW5WYXJdLCBwcm9icyA9IGMoMC4wMDEsIDAuOTk5KSkKdmFsX3NjYXR0ZXJfcGxvdCA8LSBnZ3Bsb3QodmFsLnBsc3Iub3V0cHV0LCBhZXMoeD1QTFNSX1ByZWRpY3RlZCwgeT1nZXQoaW5WYXIpKSkgKyAKICB0aGVtZV9idygpICsgZ2VvbV9wb2ludCgpICsgZ2VvbV9hYmxpbmUoaW50ZXJjZXB0ID0gMCwgc2xvcGUgPSAxLCBjb2xvcj0iZGFyayBncmV5IiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxpbmV0eXBlPSJkYXNoZWQiLCBzaXplPTEuNSkgKyB4bGltKHJuZ19xdWFudFsxXSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJuZ19xdWFudFsyXSkgKyAKICB5bGltKHJuZ19xdWFudFsxXSwgcm5nX3F1YW50WzJdKSArCiAgbGFicyh4PXBhc3RlMCgiUHJlZGljdGVkICIsIHBhc3RlKGluVmFyKSwgIiAodW5pdHMpIiksCiAgICAgICB5PXBhc3RlMCgiT2JzZXJ2ZWQgIiwgcGFzdGUoaW5WYXIpLCAiICh1bml0cykiKSwKICAgICAgIHRpdGxlPXBhc3RlMCgiVmFsaWRhdGlvbjogIiwgcGFzdGUwKCJSc3EgPSAiLCB2YWwuUjIpLCAiOyAiLCBwYXN0ZTAoIlJNU0VQID0gIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZhbC5STVNFUCkpKSArCiAgdGhlbWUoYXhpcy50ZXh0PWVsZW1lbnRfdGV4dChzaXplPTE4KSwgbGVnZW5kLnBvc2l0aW9uPSJub25lIiwKICAgICAgICBheGlzLnRpdGxlPWVsZW1lbnRfdGV4dChzaXplPTIwLCBmYWNlPSJib2xkIiksIAogICAgICAgIGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gMCx2anVzdCA9IDAuNSksCiAgICAgICAgcGFuZWwuYm9yZGVyID0gZWxlbWVudF9yZWN0KGxpbmV0eXBlID0gInNvbGlkIiwgZmlsbCA9IE5BLCBzaXplPTEuNSkpCgp2YWxfcmVzaWRfaGlzdG9ncmFtIDwtIGdncGxvdCh2YWwucGxzci5vdXRwdXQsIGFlcyh4PVBMU1JfUmVzaWR1YWxzKSkgKwogIGdlb21faGlzdG9ncmFtKGFscGhhPS41LCBwb3NpdGlvbj0iaWRlbnRpdHkiKSArIAogIGdlb21fdmxpbmUoeGludGVyY2VwdCA9IDAsIGNvbG9yPSJibGFjayIsIAogICAgICAgICAgICAgbGluZXR5cGU9ImRhc2hlZCIsIHNpemU9MSkgKyB0aGVtZV9idygpICsgCiAgdGhlbWUoYXhpcy50ZXh0PWVsZW1lbnRfdGV4dChzaXplPTE4KSwgbGVnZW5kLnBvc2l0aW9uPSJub25lIiwKICAgICAgICBheGlzLnRpdGxlPWVsZW1lbnRfdGV4dChzaXplPTIwLCBmYWNlPSJib2xkIiksIAogICAgICAgIGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gMCx2anVzdCA9IDAuNSksCiAgICAgICAgcGFuZWwuYm9yZGVyID0gZWxlbWVudF9yZWN0KGxpbmV0eXBlID0gInNvbGlkIiwgZmlsbCA9IE5BLCBzaXplPTEuNSkpCgojIHBsb3QgY2FsL3ZhbCBzaWRlLWJ5LXNpZGUKc2NhdHRlcnBsb3RzIDwtIGdyaWQuYXJyYW5nZShjYWxfc2NhdHRlcl9wbG90LCB2YWxfc2NhdHRlcl9wbG90LCBjYWxfcmVzaWRfaGlzdG9ncmFtLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICB2YWxfcmVzaWRfaGlzdG9ncmFtLCBucm93PTIsbmNvbD0yKQpnZ3NhdmUoZmlsZW5hbWUgPSBmaWxlLnBhdGgob3V0ZGlyLHBhc3RlMChpblZhciwiX0NhbF9WYWxfU2NhdHRlcnBsb3RzLnBuZyIpKSwgCiAgICAgICBwbG90ID0gc2NhdHRlcnBsb3RzLCBkZXZpY2U9InBuZyIsIAogICAgICAgd2lkdGggPSAzMiwgCiAgICAgICBoZWlnaHQgPSAzMCwgdW5pdHMgPSAiY20iLAogICAgICAgZHBpID0gMzAwKQpgYGAKCiMjIyBHZW5lcmF0ZSBDb2VmZmljaWVudCBhbmQgVklQIHBsb3RzCmBgYHtyLCBmaWcuaGVpZ2h0ID0gOSwgZmlnLndpZHRoID0gMTAsIGVjaG89VFJVRX0KdmlwcyA8LSBzcGVjdHJhdHJhaXQ6OlZJUChwbHNyLm91dClbbkNvbXBzLF0KcGFyKG1mcm93PWMoMiwxKSkKcGxvdChwbHNyLm91dCwgcGxvdHR5cGUgPSAiY29lZiIseGxhYj0iV2F2ZWxlbmd0aCAobm0pIiwKICAgICB5bGFiPSJSZWdyZXNzaW9uIGNvZWZmaWNpZW50cyIsbGVnZW5kcG9zID0gImJvdHRvbXJpZ2h0IiwKICAgICBuY29tcD1uQ29tcHMsbHdkPTIpCmJveChsd2Q9Mi4yKQpwbG90KHNlcShTdGFydC53YXZlLEVuZC53YXZlLDEpLHZpcHMseGxhYj0iV2F2ZWxlbmd0aCAobm0pIix5bGFiPSJWSVAiLGNleD0wLjAxKQpsaW5lcyhzZXEoU3RhcnQud2F2ZSxFbmQud2F2ZSwxKSx2aXBzLGx3ZD0zKQphYmxpbmUoaD0wLjgsbHR5PTIsY29sPSJkYXJrIGdyZXkiKQpib3gobHdkPTIuMikKZGV2LmNvcHkocG5nLGZpbGUucGF0aChvdXRkaXIscGFzdGUwKGluVmFyLCdfQ29lZmZpY2llbnRfVklQX3Bsb3QucG5nJykpLCAKICAgICAgICAgaGVpZ2h0PTMxMDAsIHdpZHRoPTQxMDAsIHJlcz0zNDApCmRldi5vZmYoKTsKYGBgCgojIyMgSmFja2tuaWZlIHZhbGlkYXRpb24KYGBge3IsIGVjaG89VFJVRX0KaWYoZ3JlcGwoIldpbmRvd3MiLCBzZXNzaW9uSW5mbygpJHJ1bm5pbmcpKXsKICBwbHMub3B0aW9ucyhwYXJhbGxlbCA9TlVMTCkKfSBlbHNlIHsKICBwbHMub3B0aW9ucyhwYXJhbGxlbCA9IHBhcmFsbGVsOjpkZXRlY3RDb3JlcygpLTEpCn0KCmprLnBsc3Iub3V0IDwtIHBsczo6cGxzcihhcy5mb3JtdWxhKHBhc3RlKGluVmFyLCJ+IiwiU3BlY3RyYSIpKSwgc2NhbGU9RkFMU0UsIAogICAgICAgICAgICAgICAgICAgICAgICAgY2VudGVyPVRSVUUsIG5jb21wPW5Db21wcywgdmFsaWRhdGlvbj0iTE9PIiwgdHJhY2U9RkFMU0UsIAogICAgICAgICAgICAgICAgICAgICAgICAgamFja2tuaWZlPVRSVUUsIAogICAgICAgICAgICAgICAgICAgICAgICAgZGF0YT1jYWwucGxzci5kYXRhKQpwbHMub3B0aW9ucyhwYXJhbGxlbCA9IE5VTEwpCgpKYWNra25pZmVfY29lZiA8LSBzcGVjdHJhdHJhaXQ6OmYuY29lZi52YWxpZChwbHNyLm91dCA9IGprLnBsc3Iub3V0LCBkYXRhX3Bsc3IgPSBjYWwucGxzci5kYXRhLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5jb21wID0gbkNvbXBzLCBpblZhcj1pblZhcikKSmFja2tuaWZlX2ludGVyY2VwdCA8LSBKYWNra25pZmVfY29lZlsxLCwsXQpKYWNra25pZmVfY29lZiA8LSBKYWNra25pZmVfY29lZlsyOmRpbShKYWNra25pZmVfY29lZilbMV0sLCxdCgppbnRlcnZhbCA8LSBjKDAuMDI1LDAuOTc1KQpKYWNra25pZmVfUHJlZCA8LSB2YWwucGxzci5kYXRhJFNwZWN0cmEgJSolIEphY2trbmlmZV9jb2VmICsgCiAgbWF0cml4KHJlcChKYWNra25pZmVfaW50ZXJjZXB0LCBsZW5ndGgodmFsLnBsc3IuZGF0YVssaW5WYXJdKSksIGJ5cm93PVRSVUUsIAogICAgICAgICBuY29sPWxlbmd0aChKYWNra25pZmVfaW50ZXJjZXB0KSkKSW50ZXJ2YWxfQ29uZiA8LSBhcHBseShYID0gSmFja2tuaWZlX1ByZWQsIE1BUkdJTiA9IDEsIEZVTiA9IHF1YW50aWxlLCAKICAgICAgICAgICAgICAgICAgICAgICBwcm9icz1jKGludGVydmFsWzFdLCBpbnRlcnZhbFsyXSkpCnNkX21lYW4gPC0gYXBwbHkoWCA9IEphY2trbmlmZV9QcmVkLCBNQVJHSU4gPSAxLCBGVU4gPXNkKQpzZF9yZXMgPC0gc2QodmFsLnBsc3Iub3V0cHV0JFBMU1JfUmVzaWR1YWxzKQpzZF90b3QgPC0gc3FydChzZF9tZWFuXjIrc2RfcmVzXjIpCnZhbC5wbHNyLm91dHB1dCRMQ0kgPC0gSW50ZXJ2YWxfQ29uZlsxLF0KdmFsLnBsc3Iub3V0cHV0JFVDSSA8LSBJbnRlcnZhbF9Db25mWzIsXQp2YWwucGxzci5vdXRwdXQkTFBJIDwtIHZhbC5wbHNyLm91dHB1dCRQTFNSX1ByZWRpY3RlZC0xLjk2KnNkX3RvdAp2YWwucGxzci5vdXRwdXQkVVBJIDwtIHZhbC5wbHNyLm91dHB1dCRQTFNSX1ByZWRpY3RlZCsxLjk2KnNkX3RvdApoZWFkKHZhbC5wbHNyLm91dHB1dCkKdmFsLnBsc3Iub3V0cHV0JExQSSA8LSB2YWwucGxzci5vdXRwdXQkUExTUl9QcmVkaWN0ZWQtMS45NipzZF90b3QKdmFsLnBsc3Iub3V0cHV0JFVQSSA8LSB2YWwucGxzci5vdXRwdXQkUExTUl9QcmVkaWN0ZWQrMS45NipzZF90b3QKaGVhZCh2YWwucGxzci5vdXRwdXQpCmBgYAoKIyMjIEphY2trbmlmZSBjb2VmZmljaWVudCBwbG90CmBgYHtyLCBmaWcuaGVpZ2h0ID0gNiwgZmlnLndpZHRoID0gMTAsIGVjaG89VFJVRX0Kc3BlY3RyYXRyYWl0OjpmLnBsb3QuY29lZihaID0gdChKYWNra25pZmVfY29lZiksIHd2ID0gd3YsIAogICAgICAgICAgICBwbG90X2xhYmVsPSJKYWNra25pZmUgcmVncmVzc2lvbiBjb2VmZmljaWVudHMiLHBvc2l0aW9uID0gJ2JvdHRvbWxlZnQnKQphYmxpbmUoaD0wLGx0eT0yLGNvbD0iZ3JleTUwIikKYm94KGx3ZD0yLjIpCmRldi5jb3B5KHBuZyxmaWxlLnBhdGgob3V0ZGlyLHBhc3RlMChpblZhciwnX0phY2trbmlmZV9SZWdyZXNzaW9uX0NvZWZmaWNpZW50cy5wbmcnKSksIAogICAgICAgICBoZWlnaHQ9MjEwMCwgd2lkdGg9MzgwMCwgcmVzPTM0MCkKZGV2Lm9mZigpOwpgYGAKCiMjIyBKYWNra25pZmUgdmFsaWRhdGlvbiBwbG90CmBgYHtyLCBmaWcuaGVpZ2h0ID0gNywgZmlnLndpZHRoID0gOCwgZWNobz1UUlVFfQpybXNlcF9wZXJjcm1zZXAgPC0gc3BlY3RyYXRyYWl0OjpwZXJjZW50X3Jtc2UocGxzcl9kYXRhc2V0ID0gdmFsLnBsc3Iub3V0cHV0LCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGluVmFyID0gaW5WYXIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVzaWR1YWxzID0gdmFsLnBsc3Iub3V0cHV0JFBMU1JfUmVzaWR1YWxzLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJhbmdlPSJmdWxsIikKUk1TRVAgPC0gcm1zZXBfcGVyY3Jtc2VwJHJtc2UKcGVyY19STVNFUCA8LSBybXNlcF9wZXJjcm1zZXAkcGVyY19ybXNlCnIyIDwtIHJvdW5kKHBsczo6UjIocGxzci5vdXQsIG5ld2RhdGEgPSB2YWwucGxzci5kYXRhLGludGVyY2VwdD1GKSR2YWxbbkNvbXBzXSwyKQpleHByIDwtIHZlY3RvcigiZXhwcmVzc2lvbiIsIDMpCmV4cHJbWzFdXSA8LSBicXVvdGUoUl4yPT0uKHIyKSkKZXhwcltbMl1dIDwtIGJxdW90ZShSTVNFUD09Lihyb3VuZChSTVNFUCwyKSkpCmV4cHJbWzNdXSA8LSBicXVvdGUoIiVSTVNFUCI9PS4ocm91bmQocGVyY19STVNFUCwyKSkpCnJuZ192YWxzIDwtIGMobWluKHZhbC5wbHNyLm91dHB1dCRMUEkpLCBtYXgodmFsLnBsc3Iub3V0cHV0JFVQSSkpCnBhcihtZnJvdz1jKDEsMSksIG1hcj1jKDQuMiw1LjMsMSwwLjQpLCBvbWE9YygwLCAwLjEsIDAsIDAuMikpCnBsb3RyaXg6OnBsb3RDSSh2YWwucGxzci5vdXRwdXQkUExTUl9QcmVkaWN0ZWQsdmFsLnBsc3Iub3V0cHV0WyxpblZhcl0sIAogICAgICAgbGk9dmFsLnBsc3Iub3V0cHV0JExQSSwgdWk9dmFsLnBsc3Iub3V0cHV0JFVQSSwgZ2FwPTAuMDA5LHNmcmFjPTAuMDA0LCAKICAgICAgIGx3ZD0xLjYsIHhsaW09YyhybmdfdmFsc1sxXSwgcm5nX3ZhbHNbMl0pLCB5bGltPWMocm5nX3ZhbHNbMV0sIHJuZ192YWxzWzJdKSwgCiAgICAgICBlcnI9IngiLCBwY2g9MjEsIGNvbD0iYmxhY2siLCBwdC5iZz1zY2FsZXM6OmFscGhhKCJncmV5NzAiLDAuNyksIHNjb2w9ImdyZXk1MCIsCiAgICAgICBjZXg9MiwgeGxhYj1wYXN0ZTAoIlByZWRpY3RlZCAiLCBwYXN0ZShpblZhciksICIgKHVuaXRzKSIpLAogICAgICAgeWxhYj1wYXN0ZTAoIk9ic2VydmVkICIsIHBhc3RlKGluVmFyKSwgIiAodW5pdHMpIiksCiAgICAgICBjZXguYXhpcz0xLjUsY2V4LmxhYj0xLjgpCmFibGluZSgwLDEsbHR5PTIsbHc9MikKbGVnZW5kKCJ0b3BsZWZ0IiwgbGVnZW5kPWV4cHIsIGJ0eT0ibiIsIGNleD0xLjUpCmJveChsd2Q9Mi4yKQpkZXYuY29weShwbmcsZmlsZS5wYXRoKG91dGRpcixwYXN0ZTAoaW5WYXIsIl9QTFNSX1ZhbGlkYXRpb25fU2NhdHRlcnBsb3QucG5nIikpLCAKICAgICAgICAgaGVpZ2h0PTI4MDAsIHdpZHRoPTMyMDAsICByZXM9MzQwKQpkZXYub2ZmKCk7CmBgYAoKIyMjIE91dHB1dCBqYWNra25pZmUgcmVzdWx0cwpgYGB7ciwgZWNobz1UUlVFfQpvdXQuamsuY29lZnMgPC0gZGF0YS5mcmFtZShJdGVyYXRpb249c2VxKDEsbGVuZ3RoKEphY2trbmlmZV9pbnRlcmNlcHQpLDEpLAogICAgICAgICAgICAgICAgICAgICAgICAgICBJbnRlcmNlcHQ9SmFja2tuaWZlX2ludGVyY2VwdCx0KEphY2trbmlmZV9jb2VmKSkKaGVhZChvdXQuamsuY29lZnMpWzE6Nl0Kd3JpdGUuY3N2KG91dC5qay5jb2VmcyxmaWxlPWZpbGUucGF0aChvdXRkaXIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFzdGUwKGluVmFyLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnX0phY2traWZlX1BMU1JfQ29lZmZpY2llbnRzLmNzdicpKSwKICAgICAgICAgIHJvdy5uYW1lcz1GQUxTRSkKYGBgCgojIyMgQ3JlYXRlIGNvcmUgUExTUiBvdXRwdXRzCmBgYHtyLCBlY2hvPVRSVUV9CnByaW50KHBhc3RlKCJPdXRwdXQgZGlyZWN0b3J5OiAiLCBvdXRkaXIpKQoKIyBPYnNlcnZlZCB2ZXJzdXMgcHJlZGljdGVkCndyaXRlLmNzdihjYWwucGxzci5vdXRwdXQsZmlsZT1maWxlLnBhdGgob3V0ZGlyLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBhc3RlMChpblZhciwnX09ic2VydmVkX1BMU1JfQ1ZfUHJlZF8nLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuQ29tcHMsJ2NvbXAuY3N2JykpLAogICAgICAgICAgcm93Lm5hbWVzPUZBTFNFKQoKIyBWYWxpZGF0aW9uIGRhdGEKd3JpdGUuY3N2KHZhbC5wbHNyLm91dHB1dCxmaWxlPWZpbGUucGF0aChvdXRkaXIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFzdGUwKGluVmFyLCdfVmFsaWRhdGlvbl9QTFNSX1ByZWRfJywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbkNvbXBzLCdjb21wLmNzdicpKSwKICAgICAgICAgIHJvdy5uYW1lcz1GQUxTRSkKCiMgTW9kZWwgY29lZmZpY2llbnRzCmNvZWZzIDwtIGNvZWYocGxzci5vdXQsbmNvbXA9bkNvbXBzLGludGVyY2VwdD1UUlVFKQp3cml0ZS5jc3YoY29lZnMsZmlsZT1maWxlLnBhdGgob3V0ZGlyLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFzdGUwKGluVmFyLCdfUExTUl9Db2VmZmljaWVudHNfJywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuQ29tcHMsJ2NvbXAuY3N2JykpLAogICAgICAgICAgcm93Lm5hbWVzPVRSVUUpCgojIFBMU1IgVklQCndyaXRlLmNzdih2aXBzLGZpbGU9ZmlsZS5wYXRoKG91dGRpciwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFzdGUwKGluVmFyLCdfUExTUl9WSVBzXycsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuQ29tcHMsJ2NvbXAuY3N2JykpKQpgYGAKCiMjIyBDb25maXJtIGZpbGVzIHdlcmUgd3JpdHRlbiB0byB0ZW1wIHNwYWNlCmBgYHtyLCBlY2hvPVRSVUV9CnByaW50KCIqKioqIFBMU1Igb3V0cHV0IGZpbGVzOiAiKQpwcmludChsaXN0LmZpbGVzKG91dGRpcilbZ3JlcChwYXR0ZXJuID0gaW5WYXIsIGxpc3QuZmlsZXMob3V0ZGlyKSldKQpgYGAK