Does PE direction matter for updating?

95% Confidence intervals for positive and negative PE parameters do not overlap. Effects of positive and negative PEs on latter updating are significantly different.

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## delta_pred_2 ~ 0 + isPosPE_lag1:unsigned_lag_pe_2 + isNegPE_lag1:unsigned_lag_pe_2 +  
##     (1 | id)
##    Data: df.new
## 
## REML criterion at convergence: 12596.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.9181 -0.5717 -0.0298  0.4869  3.6850 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)   0.0     0.00   
##  Residual             224.1    14.97   
## Number of obs: 1526, groups:  id, 696
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## isPosPE_lag10:unsigned_lag_pe_2   -0.17702    0.04964 1524.00000  -3.566
## isPosPE_lag11:unsigned_lag_pe_2    0.35671    0.03992 1524.00000   8.936
##                                 Pr(>|t|)    
## isPosPE_lag10:unsigned_lag_pe_2 0.000374 ***
## isPosPE_lag11:unsigned_lag_pe_2  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             iPPE_10
## iPPE_11:___ 0.000  
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

##                                      2.5 %      97.5 %
## isPosPE_lag10:unsigned_lag_pe_2 -0.2743219 -0.07972609
## isPosPE_lag11:unsigned_lag_pe_2  0.2784738  0.43493884

distribution of prediction adjustment

n mean sd median trimmed mad min max range skew kurtosis se
Prediction Adjustment 2565 -2.47 7.02 0 -2.23 2.97 -40 45 85 -0.3 6.34 0.14

distribution of confidence in Prediction 1 and Prediction 2

How does confidence relate to prediction adjustment?

Confidence is associated with lower prediction adjustment.

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: unsigned_pred_adj ~ conf_1 + (1 | id)
##    Data: df.new
## 
## REML criterion at convergence: 16413.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8502 -0.6401 -0.3008  0.2802  6.5953 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  5.058   2.249   
##  Residual             31.213   5.587   
## Number of obs: 2560, groups:  id, 873
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)  5.458e+00  3.447e-01  1.622e+03  15.834  < 2e-16 ***
## conf_1      -1.589e-02  5.214e-03  1.911e+03  -3.047  0.00234 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##        (Intr)
## conf_1 -0.918

Does direction of prediction adjustment matter for confidence?

Low confidence is more strongly associated with negative prediction adjustments than positive.

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: conf_1 ~ unsigned_pred_adj:pred_adj_sign + (1 | id)
##    Data: df.new
## 
## REML criterion at convergence: 12794.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.77686 -0.52454  0.05481  0.59979  2.91508 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 251.3    15.85   
##  Residual             307.7    17.54   
## Number of obs: 1415, groups:  id, 755
## 
## Fixed effects:
##                                    Estimate Std. Error        df t value
## (Intercept)                         62.4294     1.0944 1210.9308  57.046
## unsigned_pred_adj:pred_adj_sign-1   -0.3921     0.1039 1377.4743  -3.774
## unsigned_pred_adj:pred_adj_sign1     0.1220     0.1377 1285.7425   0.886
##                                   Pr(>|t|)    
## (Intercept)                        < 2e-16 ***
## unsigned_pred_adj:pred_adj_sign-1 0.000168 ***
## unsigned_pred_adj:pred_adj_sign1  0.375758    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) u__:__-
## unsg__:__-1 -0.689        
## unsgn__:__1 -0.465  0.406

Negative, but not positive prediction adjustments are associated with confidence in prediction 1. Effect of confidence on positive prediction adjustment does not differ significantly from zero.

Does prediction adjustment track cumulative error in prediction (SSE) at the final exam?

SSE at the final exam is unrelated to confidence. This is true for confidence in both first and second prediction.

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: conf_2 ~ pred_2_sse + (1 | cohort/class)
##    Data: df.new[which(df.new$is_final == 1), ]
## 
## REML criterion at convergence: 3347.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.30678 -0.58688 -0.01982  0.76697  1.89781 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  class:cohort (Intercept)   2.516   1.586  
##  cohort       (Intercept)   0.000   0.000  
##  Residual                 598.170  24.458  
## Number of obs: 362, groups:  class:cohort, 3; cohort, 2
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)  57.615490   2.262717   7.595607   25.46 1.25e-08 ***
## pred_2_sse   -0.002527   0.003280 302.286651   -0.77    0.442    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr)
## pred_2_sse -0.708
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

Does direction of prediciton adustment matter for latter updating?

Learning rate is apparently steeper following negative prediction adjustments.

## 
## Call:
## lm(formula = delta_pred_2 ~ pred_adj_sign_lag1:unsigned_pred_adj_lag1, 
##     data = df.new)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -74.316  -7.807   0.684   8.438  53.333 
## 
## Coefficients:
##                                             Estimate Std. Error t value
## (Intercept)                                 -4.98189    0.83067  -5.997
## pred_adj_sign_lag1-1:unsigned_pred_adj_lag1  0.92975    0.09116  10.199
## pred_adj_sign_lag11:unsigned_pred_adj_lag1   0.50396    0.11981   4.206
##                                             Pr(>|t|)    
## (Intercept)                                 2.99e-09 ***
## pred_adj_sign_lag1-1:unsigned_pred_adj_lag1  < 2e-16 ***
## pred_adj_sign_lag11:unsigned_pred_adj_lag1  2.88e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.86 on 828 degrees of freedom
##   (3534 observations deleted due to missingness)
## Multiple R-squared:  0.1119, Adjusted R-squared:  0.1097 
## F-statistic: 52.15 on 2 and 828 DF,  p-value: < 2.2e-16

Does uncertainty modulate affective reactivity to PEs?

Prediction adjustment as a proxy for uncertainty

Here, mean PA and NA following grade reveal are the criterion variables. Affective reactivity to PEs is greater when uncertainty is low (i.e., less prediction adjustment).

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_Mean_DSP_bc ~ unsigned_pred_adj * pe_2 + (1 | id)
##    Data: df.new
## 
## REML criterion at convergence: 20312.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6118 -0.5486  0.0328  0.5781  4.4511 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  14.01    3.743  
##  Residual             147.26   12.135  
## Number of obs: 2565, groups:  id, 873
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)            -1.862e+00  3.358e-01  1.073e+03  -5.543 3.73e-08 ***
## unsigned_pred_adj      -2.236e-01  4.501e-02  2.558e+03  -4.968 7.19e-07 ***
## pe_2                    4.816e-01  2.577e-02  2.530e+03  18.690  < 2e-16 ***
## unsigned_pred_adj:pe_2 -1.342e-02  2.977e-03  2.554e+03  -4.508 6.85e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) unsg__ pe_2  
## unsgnd_prd_ -0.555              
## pe_2        -0.127  0.107       
## unsgnd__:_2  0.138 -0.354 -0.582

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: NA_Mean_DSP_bc ~ unsigned_pred_adj * pe_2 + (1 | id)
##    Data: df.new
## 
## REML criterion at convergence: 21432.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7337 -0.6020 -0.0831  0.5653  4.3735 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  27.06    5.202  
##  Residual             223.71   14.957  
## Number of obs: 2565, groups:  id, 873
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             2.831e+00  4.245e-01  1.092e+03   6.668 4.10e-11 ***
## unsigned_pred_adj       3.099e-01  5.602e-02  2.561e+03   5.532 3.50e-08 ***
## pe_2                   -5.878e-01  3.210e-02  2.544e+03 -18.311  < 2e-16 ***
## unsigned_pred_adj:pe_2  1.539e-02  3.701e-03  2.548e+03   4.158 3.32e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) unsg__ pe_2  
## unsgnd_prd_ -0.548              
## pe_2        -0.124  0.105       
## unsgnd__:_2  0.135 -0.353 -0.580

Prediction adjustment (unsigned; uncertainty in prediction) differentiates reactivity to positive, but not negative PEs. People who make large prediction adjustments are less reactive to positive PEs. People who maintain the same prediction, and presumably have greater certainty in their predictions, display the greatest reactivity to positive PEs.

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_overall_BC ~ unsigned_pred_adj * pe_2 * bindex + exam + (1 |  
##     id)
##    Data: df
## 
## REML criterion at convergence: 168029.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.4801 -0.5727  0.0105  0.5865  4.7087 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  77.74    8.817  
##  Residual             212.70   14.584  
## Number of obs: 20269, groups:  id, 873
## 
## Fixed effects:
##                                 Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   -8.490e+00  4.659e-01  3.138e+03 -18.220  < 2e-16
## unsigned_pred_adj             -3.592e-01  3.951e-02  2.026e+04  -9.092  < 2e-16
## pe_2                           9.366e-01  2.216e-02  2.026e+04  42.272  < 2e-16
## bindex                         1.886e-01  2.361e-02  1.957e+04   7.987 1.46e-15
## exam                           1.645e+00  9.511e-02  2.022e+04  17.301  < 2e-16
## unsigned_pred_adj:pe_2        -2.470e-02  2.637e-03  2.025e+04  -9.367  < 2e-16
## unsigned_pred_adj:bindex       1.963e-02  3.466e-03  1.964e+04   5.662 1.52e-08
## pe_2:bindex                   -3.672e-02  1.941e-03  1.958e+04 -18.912  < 2e-16
## unsigned_pred_adj:pe_2:bindex  9.364e-04  2.304e-04  1.969e+04   4.065 4.82e-05
##                                  
## (Intercept)                   ***
## unsigned_pred_adj             ***
## pe_2                          ***
## bindex                        ***
## exam                          ***
## unsigned_pred_adj:pe_2        ***
## unsigned_pred_adj:bindex      ***
## pe_2:bindex                   ***
## unsigned_pred_adj:pe_2:bindex ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) unsg__ pe_2   bindex exam   un__:_2 uns__: p_2:bn
## unsgnd_prd_ -0.378                                                  
## pe_2        -0.079  0.114                                           
## bindex      -0.440  0.458  0.136                                    
## exam        -0.504  0.054 -0.015 -0.015                             
## unsgnd__:_2  0.101 -0.383 -0.578 -0.142 -0.018                      
## unsgnd_pr_:  0.264 -0.787 -0.110 -0.581  0.002  0.322               
## pe_2:bindex  0.077 -0.113 -0.785 -0.180  0.007  0.462   0.141       
## unsgn__:_2: -0.085  0.326  0.462  0.182  0.003 -0.790  -0.411 -0.586
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling

A similar pattern emerges for NA reactivity as a function of unsigned prediction adjustment.

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: NA_overall_BC ~ unsigned_pred_adj * pe_2 * bindex + exam + (1 |  
##     id)
##    Data: df
## 
## REML criterion at convergence: 174960
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.3515 -0.6091 -0.0419  0.5833  4.7733 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 126.4    11.24   
##  Residual             297.8    17.26   
## Number of obs: 20269, groups:  id, 873
## 
## Fixed effects:
##                                 Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    1.292e+01  5.701e-01  2.784e+03  22.671  < 2e-16
## unsigned_pred_adj              3.997e-01  4.687e-02  2.025e+04   8.528  < 2e-16
## pe_2                          -1.064e+00  2.628e-02  2.025e+04 -40.493  < 2e-16
## bindex                        -3.522e-01  2.795e-02  1.954e+04 -12.600  < 2e-16
## exam                          -2.274e+00  1.128e-01  2.017e+04 -20.168  < 2e-16
## unsigned_pred_adj:pe_2         2.672e-02  3.129e-03  2.026e+04   8.538  < 2e-16
## unsigned_pred_adj:bindex      -1.196e-02  4.103e-03  1.961e+04  -2.914 0.003574
## pe_2:bindex                    3.838e-02  2.298e-03  1.955e+04  16.701  < 2e-16
## unsigned_pred_adj:pe_2:bindex -1.030e-03  2.727e-04  1.965e+04  -3.778 0.000158
##                                  
## (Intercept)                   ***
## unsigned_pred_adj             ***
## pe_2                          ***
## bindex                        ***
## exam                          ***
## unsigned_pred_adj:pe_2        ***
## unsigned_pred_adj:bindex      ** 
## pe_2:bindex                   ***
## unsigned_pred_adj:pe_2:bindex ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) unsg__ pe_2   bindex exam   un__:_2 uns__: p_2:bn
## unsgnd_prd_ -0.367                                                  
## pe_2        -0.076  0.113                                           
## bindex      -0.426  0.457  0.136                                    
## exam        -0.488  0.054 -0.014 -0.015                             
## unsgnd__:_2  0.097 -0.382 -0.577 -0.142 -0.018                      
## unsgnd_pr_:  0.256 -0.785 -0.110 -0.581  0.002  0.321               
## pe_2:bindex  0.074 -0.113 -0.784 -0.180  0.007  0.461   0.141       
## unsgn__:_2: -0.082  0.326  0.461  0.182  0.003 -0.788  -0.411 -0.586
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling

SSE as a proxy for uncertainty

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_Mean_DSP_bc ~ pred_2_sse * pe_2 + exam + (1 | id)
##    Data: df.new
## 
## REML criterion at convergence: 14331.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5542 -0.5156  0.0408  0.5694  4.3053 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  12.13    3.482  
##  Residual             135.22   11.628  
## Number of obs: 1828, groups:  id, 611
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     -5.943e+00  6.075e-01  1.823e+03  -9.784  < 2e-16 ***
## pred_2_sse      -3.390e-03  1.020e-03  7.495e+02  -3.323 0.000934 ***
## pe_2             5.229e-01  4.413e-02  1.822e+03  11.849  < 2e-16 ***
## exam             1.930e+00  2.565e-01  1.820e+03   7.524 8.33e-14 ***
## pred_2_sse:pe_2 -2.078e-04  6.579e-05  1.822e+03  -3.159 0.001608 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) prd_2_ pe_2   exam  
## pred_2_sse  -0.129                     
## pe_2        -0.038  0.059              
## exam        -0.691 -0.463 -0.036       
## prd_2_ss:_2  0.040 -0.082 -0.840  0.022
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: NA_Mean_DSP_bc ~ pred_2_sse * pe_2 + exam + (1 | id)
##    Data: df.new
## 
## REML criterion at convergence: 15174.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8567 -0.6246 -0.0760  0.5435  4.2394 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  23.33    4.83   
##  Residual             211.46   14.54   
## Number of obs: 1828, groups:  id, 611
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      8.936e+00  7.654e-01  1.823e+03  11.675  < 2e-16 ***
## pred_2_sse       4.670e-03  1.303e-03  7.901e+02   3.584 0.000359 ***
## pe_2            -6.679e-01  5.559e-02  1.819e+03 -12.016  < 2e-16 ***
## exam            -2.657e+00  3.233e-01  1.822e+03  -8.218 3.89e-16 ***
## pred_2_sse:pe_2  2.800e-04  8.291e-05  1.823e+03   3.377 0.000749 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) prd_2_ pe_2   exam  
## pred_2_sse  -0.130                     
## pe_2        -0.038  0.058              
## exam        -0.681 -0.469 -0.035       
## prd_2_ss:_2  0.040 -0.081 -0.839  0.022
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_overall_BC ~ SSE_2 * pe_2 * bindex + exam + (1 | id)
##    Data: df
## 
## REML criterion at convergence: 156063.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7192 -0.5694  0.0118  0.5822  4.7026 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  91.71    9.576  
##  Residual             207.47   14.404  
## Number of obs: 18856, groups:  id, 873
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       -1.070e+01  4.911e-01  2.883e+03 -21.780  < 2e-16 ***
## SSE_2             -2.141e-03  9.122e-04  1.195e+04  -2.347   0.0189 *  
## pe_2               1.069e+00  3.470e-02  1.882e+04  30.815  < 2e-16 ***
## bindex             3.086e-01  2.821e-02  1.817e+04  10.938  < 2e-16 ***
## exam               2.047e+00  1.370e-01  1.396e+04  14.940  < 2e-16 ***
## SSE_2:pe_2        -4.982e-04  5.331e-05  1.875e+04  -9.344  < 2e-16 ***
## SSE_2:bindex      -6.623e-05  6.088e-05  1.812e+04  -1.088   0.2767    
## pe_2:bindex       -4.604e-02  3.067e-03  1.816e+04 -15.012  < 2e-16 ***
## SSE_2:pe_2:bindex  2.614e-05  4.732e-06  1.810e+04   5.524 3.35e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) SSE_2  pe_2   bindex exam   SSE_2:p_2 SSE_2:b p_2:bn
## SSE_2       -0.266                                                     
## pe_2        -0.108  0.113                                              
## bindex      -0.503  0.422  0.141                                       
## exam        -0.327 -0.509 -0.017  0.002                                
## SSE_2:pe_2   0.104 -0.197 -0.844 -0.140  0.033                         
## SSE_2:bindx  0.370 -0.589 -0.108 -0.717 -0.014  0.185                  
## pe_2:bindex  0.085 -0.078 -0.787 -0.186  0.006  0.673     0.143        
## SSE_2:p_2:b -0.089  0.134  0.671  0.184  0.001 -0.793    -0.242  -0.851
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: NA_overall_BC ~ SSE_2 * pe_2 * bindex + exam + (1 | id)
##    Data: df
## 
## REML criterion at convergence: 162624.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.4625 -0.6088 -0.0386  0.5744  5.0505 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 145.1    12.05   
##  Residual             292.5    17.10   
## Number of obs: 18856, groups:  id, 873
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)        1.556e+01  5.988e-01  2.626e+03  25.980  < 2e-16 ***
## SSE_2              3.494e-03  1.094e-03  1.260e+04   3.195   0.0014 ** 
## pe_2              -1.210e+00  4.127e-02  1.880e+04 -29.310  < 2e-16 ***
## bindex            -4.625e-01  3.351e-02  1.815e+04 -13.803  < 2e-16 ***
## exam              -2.927e+00  1.640e-01  1.455e+04 -17.851  < 2e-16 ***
## SSE_2:pe_2         5.446e-04  6.340e-05  1.871e+04   8.590  < 2e-16 ***
## SSE_2:bindex       1.222e-04  7.231e-05  1.810e+04   1.690   0.0911 .  
## pe_2:bindex        4.667e-02  3.643e-03  1.813e+04  12.810  < 2e-16 ***
## SSE_2:pe_2:bindex -2.534e-05  5.620e-06  1.808e+04  -4.509 6.56e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) SSE_2  pe_2   bindex exam   SSE_2:p_2 SSE_2:b p_2:bn
## SSE_2       -0.258                                                     
## pe_2        -0.105  0.112                                              
## bindex      -0.489  0.418  0.140                                       
## exam        -0.316 -0.516 -0.016  0.002                                
## SSE_2:pe_2   0.101 -0.197 -0.844 -0.140  0.033                         
## SSE_2:bindx  0.361 -0.583 -0.108 -0.717 -0.014  0.185                  
## pe_2:bindex  0.083 -0.078 -0.786 -0.186  0.006  0.672     0.143        
## SSE_2:p_2:b -0.086  0.133  0.670  0.184  0.001 -0.792    -0.242  -0.851
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling

Info Content as a proxy for uncertainty

Check with Aaron + Ross: including main effects makes this interaction N.S.

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_Mean_DSP_bc ~ info_content:pe_2 + exam + (1 | id)
##    Data: df.new
## 
## REML criterion at convergence: 6610.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7774 -0.5511  0.0472  0.5160  4.0353 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  30.16    5.492  
##  Residual             119.64   10.938  
## Number of obs: 846, groups:  id, 248
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)        -6.147022   1.327836 786.670257  -4.629 4.29e-06 ***
## exam                1.877197   0.379741 640.813838   4.943 9.82e-07 ***
## info_content:pe_2   0.007356   0.001104 842.198079   6.662 4.86e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) exam  
## exam        -0.922       
## inf_cntn:_2  0.001 -0.019

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: NA_Mean_DSP_bc ~ info_content:pe_2 + exam + (1 | id)
##    Data: df.new
## 
## REML criterion at convergence: 6987.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1126 -0.5821 -0.0598  0.5499  3.7299 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  50.79    7.127  
##  Residual             185.08   13.605  
## Number of obs: 846, groups:  id, 248
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         7.339140   1.657195 791.262140   4.429 1.08e-05 ***
## exam               -1.927382   0.472635 642.496678  -4.078 5.11e-05 ***
## info_content:pe_2  -0.009287   0.001381 842.868177  -6.722 3.29e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) exam  
## exam        -0.919       
## inf_cntn:_2  0.001 -0.020

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_overall_BC ~ log_info_content:pe_2:bindex + exam + (1 | id)
##    Data: df
## 
## REML criterion at convergence: 60172.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5039 -0.5372  0.0307  0.5691  4.6301 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  68.11    8.253  
##  Residual             205.58   14.338  
## Number of obs: 7299, groups:  id, 248
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                  -7.709e+00  7.871e-01  9.567e+02  -9.794   <2e-16
## exam                          2.276e+00  1.767e-01  7.156e+03  12.879   <2e-16
## log_info_content:pe_2:bindex  1.037e-02  7.414e-04  7.291e+03  13.989   <2e-16
##                                 
## (Intercept)                  ***
## exam                         ***
## log_info_content:pe_2:bindex ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) exam  
## exam        -0.709       
## lg_nf_c:_2: -0.007 -0.039

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: NA_overall_BC ~ log_info_content * pe_2 * bindex + exam + (1 |  
##     id)
##    Data: df
## 
## REML criterion at convergence: 61939.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5595 -0.6207 -0.0560  0.5591  4.8761 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 103.1    10.16   
##  Residual             259.7    16.12   
## Number of obs: 7299, groups:  id, 248
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   1.540e+01  1.481e+00  3.304e+03  10.396  < 2e-16
## log_info_content             -1.269e+00  5.760e-01  7.262e+03  -2.203  0.02765
## pe_2                         -9.245e-01  1.021e-01  7.285e+03  -9.052  < 2e-16
## bindex                       -6.459e-01  1.007e-01  7.073e+03  -6.414 1.51e-10
## exam                         -2.024e+00  1.993e-01  7.145e+03 -10.154  < 2e-16
## log_info_content:pe_2        -1.209e-02  4.154e-02  7.281e+03  -0.291  0.77093
## log_info_content:bindex       1.302e-01  4.751e-02  7.068e+03   2.740  0.00616
## pe_2:bindex                   4.488e-02  8.745e-03  7.066e+03   5.131 2.95e-07
## log_info_content:pe_2:bindex -4.357e-03  3.559e-03  7.063e+03  -1.224  0.22083
##                                 
## (Intercept)                  ***
## log_info_content             *  
## pe_2                         ***
## bindex                       ***
## exam                         ***
## log_info_content:pe_2           
## log_info_content:bindex      ** 
## pe_2:bindex                  ***
## log_info_content:pe_2:bindex    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lg_nf_ pe_2   bindex exam   lg__:_2 lg_n_: p_2:bn
## lg_nf_cntnt -0.753                                                  
## pe_2        -0.085  0.052                                           
## bindex      -0.619  0.708  0.147                                    
## exam        -0.395 -0.033  0.016 -0.004                             
## lg_nf_cn:_2  0.073 -0.055 -0.921 -0.133 -0.031                      
## lg_nf_cntn:  0.585 -0.757 -0.117 -0.936 -0.004  0.123               
## pe_2:bindex  0.111 -0.106 -0.789 -0.188  0.004  0.727   0.149       
## lg_nf_c:_2: -0.101  0.112  0.728  0.171  0.000 -0.791  -0.158 -0.921

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: NA_overall_BC ~ log_info_content:pe_2:bindex + exam + (1 | id)
##    Data: df
## 
## REML criterion at convergence: 62536.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6159 -0.6055 -0.0659  0.5518  5.1934 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 107.9    10.39   
##  Residual             283.0    16.82   
## Number of obs: 7299, groups:  id, 248
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   9.049e+00  9.540e-01  8.499e+02   9.485   <2e-16
## exam                         -2.180e+00  2.075e-01  7.144e+03 -10.508   <2e-16
## log_info_content:pe_2:bindex -1.257e-02  8.719e-04  7.296e+03 -14.421   <2e-16
##                                 
## (Intercept)                  ***
## exam                         ***
## log_info_content:pe_2:bindex ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) exam  
## exam        -0.687       
## lg_nf_c:_2: -0.007 -0.039

Relative effects of SSE, prediction adjustment, and information content

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_overall_BC ~ SSE_2:(pe_2:bindex) + pred_adj:(pe_2:bindex) +  
##     log_info_content:(pe_2:bindex) + exam + (1 | id)
##    Data: df
## 
## REML criterion at convergence: 60208.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.4995 -0.5380  0.0297  0.5709  4.6347 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  67.97    8.245  
##  Residual             205.60   14.339  
## Number of obs: 7299, groups:  id, 248
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                  -7.671e+00  7.879e-01  9.625e+02  -9.735   <2e-16
## exam                          2.271e+00  1.770e-01  7.152e+03  12.835   <2e-16
## SSE_2:pe_2:bindex            -9.515e-07  3.942e-06  7.293e+03  -0.241    0.809
## pe_2:bindex:pred_adj          2.959e-04  2.565e-04  7.281e+03   1.154    0.249
## pe_2:bindex:log_info_content  1.088e-02  1.181e-03  7.293e+03   9.210   <2e-16
##                                 
## (Intercept)                  ***
## exam                         ***
## SSE_2:pe_2:bindex               
## pe_2:bindex:pred_adj            
## pe_2:bindex:log_info_content ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) exam   SSE_2: p_2:b:_
## exam        -0.710                      
## SSE_2:p_2:b  0.031 -0.041               
## p_2:bndx:p_  0.051 -0.037  0.215        
## p_2:bndx:__ -0.019  0.001 -0.753  0.032 
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling

3-way Interactions: uncertainty, PE, and affect on prediction updating

Metric of uncertainty: unsigned prediction adjustment

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: delta_pred_2 ~ unsigned_pred_adj_lag1:pe_2_lag1:PA_Mean_DSP_bc_lag1 +  
##     exam + (1 | id)
##    Data: df.new
## 
## REML criterion at convergence: 12675.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5227 -0.5218 -0.0209  0.5557  4.1509 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)   0.0     0.00   
##  Residual             235.4    15.34   
## Number of obs: 1526, groups:  id, 696
## 
## Fixed effects:
##                                                        Estimate Std. Error
## (Intercept)                                           2.744e+00  1.335e+00
## exam                                                 -6.060e-01  4.094e-01
## unsigned_pred_adj_lag1:pe_2_lag1:PA_Mean_DSP_bc_lag1 -9.378e-04  2.781e-04
##                                                              df t value
## (Intercept)                                           1.523e+03   2.055
## exam                                                  1.523e+03  -1.480
## unsigned_pred_adj_lag1:pe_2_lag1:PA_Mean_DSP_bc_lag1  1.523e+03  -3.372
##                                                      Pr(>|t|)    
## (Intercept)                                          0.040061 *  
## exam                                                 0.139074    
## unsigned_pred_adj_lag1:pe_2_lag1:PA_Mean_DSP_bc_lag1 0.000765 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) exam  
## exam        -0.955       
## u___1:_2_1: -0.072  0.040
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: delta_pred_2 ~ unsigned_pred_adj_lag1:pe_2_lag1:NA_Mean_DSP_bc_lag1 +  
##     exam + (1 | id)
##    Data: df.new
## 
## REML criterion at convergence: 12676.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5749 -0.5391 -0.0186  0.5585  4.1529 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)   0.0     0.00   
##  Residual             235.4    15.34   
## Number of obs: 1526, groups:  id, 696
## 
## Fixed effects:
##                                                        Estimate Std. Error
## (Intercept)                                           2.681e+00  1.334e+00
## exam                                                 -5.988e-01  4.094e-01
## unsigned_pred_adj_lag1:pe_2_lag1:NA_Mean_DSP_bc_lag1  6.469e-04  1.934e-04
##                                                              df t value
## (Intercept)                                           1.523e+03   2.009
## exam                                                  1.523e+03  -1.463
## unsigned_pred_adj_lag1:pe_2_lag1:NA_Mean_DSP_bc_lag1  1.523e+03   3.344
##                                                      Pr(>|t|)    
## (Intercept)                                          0.044663 *  
## exam                                                 0.143732    
## unsigned_pred_adj_lag1:pe_2_lag1:NA_Mean_DSP_bc_lag1 0.000844 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) exam  
## exam        -0.955       
## u___1:_2_1:  0.058 -0.035
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

Metric of uncertainty: SSE

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: delta_pred_2 ~ pred_2_sse:pe_2_lag1:PA_Mean_DSP_bc_lag1 + exam +  
##     (1 | id)
##    Data: df.new
## 
## REML criterion at convergence: 9969.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.0270 -0.5038 -0.0783  0.5358  4.2288 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)   0       0.00   
##  Residual             208      14.42   
## Number of obs: 1217, groups:  id, 486
## 
## Fixed effects:
##                                            Estimate Std. Error         df
## (Intercept)                               5.168e+00  1.336e+00  1.214e+03
## exam                                     -9.972e-01  4.244e-01  1.214e+03
## pred_2_sse:pe_2_lag1:PA_Mean_DSP_bc_lag1 -9.709e-06  3.184e-06  1.214e+03
##                                          t value Pr(>|t|)    
## (Intercept)                                3.869 0.000115 ***
## exam                                      -2.350 0.018957 *  
## pred_2_sse:pe_2_lag1:PA_Mean_DSP_bc_lag1  -3.049 0.002344 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) exam  
## exam        -0.947       
## p_2_:_2_1:P -0.076 -0.006
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: delta_pred_2 ~ pred_2_sse:pe_2_lag1:NA_Mean_DSP_bc_lag1 + exam +  
##     (1 | id)
##    Data: df.new
## 
## REML criterion at convergence: 9966.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.0487 -0.5089 -0.0793  0.5284  4.2856 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)   0.0     0.0    
##  Residual             207.3    14.4    
## Number of obs: 1217, groups:  id, 486
## 
## Fixed effects:
##                                            Estimate Std. Error         df
## (Intercept)                               5.205e+00  1.333e+00  1.214e+03
## exam                                     -9.983e-01  4.237e-01  1.214e+03
## pred_2_sse:pe_2_lag1:NA_Mean_DSP_bc_lag1  8.562e-06  2.338e-06  1.214e+03
##                                          t value Pr(>|t|)    
## (Intercept)                                3.905 9.94e-05 ***
## exam                                      -2.356 0.018629 *  
## pred_2_sse:pe_2_lag1:NA_Mean_DSP_bc_lag1   3.662 0.000261 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) exam  
## exam        -0.948       
## p_2_:_2_1:N  0.071  0.004
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

Alternative operationalization of uncertainty: Information Content

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: delta_pred_2 ~ log_info_content_lag1:pe_2_lag1:PA_Mean_DSP_bc_lag1 +  
##     exam + (1 | id)
##    Data: df.new
## 
## REML criterion at convergence: 4827.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5909 -0.5706 -0.0593  0.5547  3.8477 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)   0.0     0.00   
##  Residual             185.8    13.63   
## Number of obs: 598, groups:  id, 248
## 
## Fixed effects:
##                                                       Estimate Std. Error
## (Intercept)                                         -6.963e+00  2.942e+00
## exam                                                 1.949e+00  7.690e-01
## log_info_content_lag1:pe_2_lag1:PA_Mean_DSP_bc_lag1  8.758e-04  1.431e-03
##                                                             df t value Pr(>|t|)
## (Intercept)                                          5.950e+02  -2.367   0.0183
## exam                                                 5.950e+02   2.534   0.0115
## log_info_content_lag1:pe_2_lag1:PA_Mean_DSP_bc_lag1  5.950e+02   0.612   0.5408
##                                                      
## (Intercept)                                         *
## exam                                                *
## log_info_content_lag1:pe_2_lag1:PA_Mean_DSP_bc_lag1  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) exam  
## exam        -0.980       
## l___1:_2_1: -0.030 -0.024
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: delta_pred_2 ~ log_info_content_lag1:pe_2_lag1:NA_Mean_DSP_bc_lag1 +  
##     exam + (1 | id)
##    Data: df.new
## 
## REML criterion at convergence: 4826.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5909 -0.5614 -0.0506  0.5547  3.9437 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)   0.0     0.00   
##  Residual             185.3    13.61   
## Number of obs: 598, groups:  id, 248
## 
## Fixed effects:
##                                                       Estimate Std. Error
## (Intercept)                                          -7.098402   2.939758
## exam                                                  1.951152   0.767737
## log_info_content_lag1:pe_2_lag1:NA_Mean_DSP_bc_lag1  -0.001542   0.001100
##                                                             df t value Pr(>|t|)
## (Intercept)                                         595.000000  -2.415   0.0161
## exam                                                595.000000   2.541   0.0113
## log_info_content_lag1:pe_2_lag1:NA_Mean_DSP_bc_lag1 595.000000  -1.402   0.1613
##                                                      
## (Intercept)                                         *
## exam                                                *
## log_info_content_lag1:pe_2_lag1:NA_Mean_DSP_bc_lag1  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) exam  
## exam        -0.980       
## l___1:_2_1:  0.046  0.008
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

Relative magnitude of uncertainty parameter estimates in 3-way interactions

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## delta_pred_2 ~ log_info_content_lag1:(pe_2_lag1:PA_Mean_DSP_bc_lag1) +  
##     pred_2_sse:(pe_2_lag1:PA_Mean_DSP_bc_lag1) + unsigned_pred_adj_lag1:(pe_2_lag1:PA_Mean_DSP_bc_lag1) +  
##     exam + (1 | id)
##    Data: df.new
## 
## REML criterion at convergence: 4846.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6340 -0.5529 -0.0389  0.5358  3.9266 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)   0.0     0.00   
##  Residual             181.7    13.48   
## Number of obs: 598, groups:  id, 248
## 
## Fixed effects:
##                                                        Estimate Std. Error
## (Intercept)                                          -7.611e+00  2.923e+00
## exam                                                  2.130e+00  7.643e-01
## log_info_content_lag1:pe_2_lag1:PA_Mean_DSP_bc_lag1   8.749e-03  2.674e-03
## pe_2_lag1:PA_Mean_DSP_bc_lag1:pred_2_sse             -3.631e-05  9.321e-06
## pe_2_lag1:PA_Mean_DSP_bc_lag1:unsigned_pred_adj_lag1  1.025e-03  7.295e-04
##                                                              df t value
## (Intercept)                                           5.930e+02  -2.604
## exam                                                  5.930e+02   2.787
## log_info_content_lag1:pe_2_lag1:PA_Mean_DSP_bc_lag1   5.930e+02   3.272
## pe_2_lag1:PA_Mean_DSP_bc_lag1:pred_2_sse              5.930e+02  -3.896
## pe_2_lag1:PA_Mean_DSP_bc_lag1:unsigned_pred_adj_lag1  5.930e+02   1.405
##                                                      Pr(>|t|)    
## (Intercept)                                          0.009447 ** 
## exam                                                 0.005485 ** 
## log_info_content_lag1:pe_2_lag1:PA_Mean_DSP_bc_lag1  0.001130 ** 
## pe_2_lag1:PA_Mean_DSP_bc_lag1:pred_2_sse             0.000109 ***
## pe_2_lag1:PA_Mean_DSP_bc_lag1:unsigned_pred_adj_lag1 0.160398    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                      (Intr) exam   l___1: p_2_1:PA_M_DSP__1:_2
## exam                 -0.981                                   
## l___1:_2_1:          -0.030  0.003                            
## p_2_1:PA_M_DSP__1:_2  0.053 -0.057 -0.774                     
## p_2_1:PA_M_DSP__1:__ -0.091  0.094 -0.090 -0.310              
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## delta_pred_2 ~ log_info_content_lag1:(pe_2_lag1:NA_Mean_DSP_bc_lag1) +  
##     pred_2_sse:(pe_2_lag1:NA_Mean_DSP_bc_lag1) + unsigned_pred_adj_lag1:(pe_2_lag1:NA_Mean_DSP_bc_lag1) +  
##     exam + (1 | id)
##    Data: df.new
## 
## REML criterion at convergence: 4853.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6108 -0.5577 -0.0471  0.5285  4.0524 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)   0.0     0.00   
##  Residual             183.2    13.54   
## Number of obs: 598, groups:  id, 248
## 
## Fixed effects:
##                                                        Estimate Std. Error
## (Intercept)                                          -7.759e+00  2.939e+00
## exam                                                  2.125e+00  7.682e-01
## log_info_content_lag1:pe_2_lag1:NA_Mean_DSP_bc_lag1  -5.541e-03  2.114e-03
## pe_2_lag1:NA_Mean_DSP_bc_lag1:pred_2_sse              1.854e-05  6.663e-06
## pe_2_lag1:NA_Mean_DSP_bc_lag1:unsigned_pred_adj_lag1 -7.439e-04  5.101e-04
##                                                              df t value
## (Intercept)                                           5.930e+02  -2.640
## exam                                                  5.930e+02   2.767
## log_info_content_lag1:pe_2_lag1:NA_Mean_DSP_bc_lag1   5.930e+02  -2.621
## pe_2_lag1:NA_Mean_DSP_bc_lag1:pred_2_sse              5.930e+02   2.783
## pe_2_lag1:NA_Mean_DSP_bc_lag1:unsigned_pred_adj_lag1  5.930e+02  -1.459
##                                                      Pr(>|t|)   
## (Intercept)                                           0.00851 **
## exam                                                  0.00584 **
## log_info_content_lag1:pe_2_lag1:NA_Mean_DSP_bc_lag1   0.00899 **
## pe_2_lag1:NA_Mean_DSP_bc_lag1:pred_2_sse              0.00555 **
## pe_2_lag1:NA_Mean_DSP_bc_lag1:unsigned_pred_adj_lag1  0.14522   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                      (Intr) exam   l___1: p_2_1:NA_M_DSP__1:_2
## exam                 -0.981                                   
## l___1:_2_1:           0.034 -0.001                            
## p_2_1:NA_M_DSP__1:_2 -0.050  0.048 -0.791                     
## p_2_1:NA_M_DSP__1:__  0.098 -0.106 -0.170 -0.190              
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular