Regresion Logisticas Univariadas (ICDAS categ)

Aca estan las modelos de ICDAS categ considerandola como variable binaria Son regresiones uivariadas

load("~/Dropbox/odontologia/maestria_anunziatta/julio2013/datos_tana_25072013.RData")


library(survey)
## Attaching package: 'survey'
## The following object(s) are masked from 'package:graphics':
## 
## dotchart
# viernes 2 de agosto 2013

# WHO
modelo6.bin <- svyglm(ICDAS.categ ~ Sexo.rec, diseniopost1, family = quasibinomial())
summary(modelo6.bin)
## 
## Call:
## svyglm(formula = ICDAS.categ ~ Sexo.rec, diseniopost1, family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.4927     0.1778    8.40  3.5e-10 ***
## Sexo.rec2-F   0.0216     0.2334    0.09     0.93    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo6.bin)
##               2.5 % 97.5 %
## (Intercept)  1.1443 1.8411
## Sexo.rec2-F -0.4359 0.4792

modelo7.bin <- svyglm(ICDAS.categ ~ Nivel.Socieconomico.rec, diseniopost1, family = quasibinomial())



summary(modelo7.bin)
## 
## Call:
## svyglm(formula = ICDAS.categ ~ Nivel.Socieconomico.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                       0.834      0.156    5.36  4.7e-06 ***
## Nivel.Socieconomico.rec2-MEDIO    0.959      0.193    4.98  1.5e-05 ***
## Nivel.Socieconomico.rec3-BAJO     1.633      0.254    6.44  1.6e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9904)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo7.bin)
##                                 2.5 % 97.5 %
## (Intercept)                    0.5291  1.140
## Nivel.Socieconomico.rec2-MEDIO 0.5812  1.336
## Nivel.Socieconomico.rec3-BAJO  1.1358  2.130



modelo8.bin <- svyglm(ICDAS.categ ~ Nivel.Educativo.de.la.Madre1.rec, diseniopost1, 
    family = quasibinomial())

summary(modelo8.bin)
## 
## Call:
## svyglm(formula = ICDAS.categ ~ Nivel.Educativo.de.la.Madre1.rec, 
##     diseniopost1, family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                                     Estimate Std. Error
## (Intercept)                                            0.523      0.170
## Nivel.Educativo.de.la.Madre1.rec2-High School          0.860      0.253
## Nivel.Educativo.de.la.Madre1.rec3-Elementary School    1.420      0.262
##                                                     t value Pr(>|t|)    
## (Intercept)                                            3.07   0.0040 ** 
## Nivel.Educativo.de.la.Madre1.rec2-High School          3.39   0.0017 ** 
## Nivel.Educativo.de.la.Madre1.rec3-Elementary School    5.42  3.8e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.975)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo8.bin)
##                                                      2.5 % 97.5 %
## (Intercept)                                         0.1894 0.8573
## Nivel.Educativo.de.la.Madre1.rec2-High School       0.3633 1.3569
## Nivel.Educativo.de.la.Madre1.rec3-Elementary School 0.9070 1.9338


modelo9.bin <- svyglm(ICDAS.categ ~ Tipo.de.Escuela.rec, diseniopost1, family = quasibinomial())

summary(modelo9.bin)
## 
## Call:
## svyglm(formula = ICDAS.categ ~ Tipo.de.Escuela.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     1.013      0.212    4.79  2.6e-05 ***
## Tipo.de.Escuela.rec2-Publica    0.711      0.249    2.86   0.0069 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo9.bin)
##                               2.5 % 97.5 %
## (Intercept)                  0.5984  1.428
## Tipo.de.Escuela.rec2-Publica 0.2237  1.199
modelo11.bin <- svyglm(ICDAS.categ ~ AtenOdonto2.rec, diseniopost1, family = quasibinomial())

summary(modelo11.bin)
## 
## Call:
## svyglm(formula = ICDAS.categ ~ AtenOdonto2.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                         Estimate Std. Error t value
## (Intercept)                                1.070      0.129    8.30
## AtenOdonto2.rec2-publica                   1.378      0.261    5.29
## AtenOdonto2.rec3-nunca fue al dentista     1.698      0.459    3.70
##                                         Pr(>|t|)    
## (Intercept)                              5.7e-10 ***
## AtenOdonto2.rec2-publica                 5.8e-06 ***
## AtenOdonto2.rec3-nunca fue al dentista     7e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9809)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo11.bin)
##                                          2.5 % 97.5 %
## (Intercept)                             0.8173  1.323
## AtenOdonto2.rec2-publica                0.8669  1.888
## AtenOdonto2.rec3-nunca fue al dentista  0.7982  2.598




modelo12.bin <- svyglm(ICDAS.categ ~ FrCepDenti.4.rec, diseniopost1, family = quasibinomial())


summary(modelo12.bin)
## 
## Call:
## svyglm(formula = ICDAS.categ ~ FrCepDenti.4.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                        Estimate Std. Error t value
## (Intercept)                               2.195      0.472    4.65
## FrCepDenti.4.rec2-1 vez al dias          -0.450      0.451   -1.00
## FrCepDenti.4.rec3-2 veces al dia         -0.680      0.508   -1.34
## FrCepDenti.4.rec4-3 veces al dia o mas   -0.863      0.486   -1.78
##                                        Pr(>|t|)    
## (Intercept)                             4.3e-05 ***
## FrCepDenti.4.rec2-1 vez al dias           0.325    
## FrCepDenti.4.rec3-2 veces al dia          0.189    
## FrCepDenti.4.rec4-3 veces al dia o mas    0.084 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9731)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo12.bin)
##                                         2.5 %  97.5 %
## (Intercept)                             1.270 3.11980
## FrCepDenti.4.rec2-1 vez al dias        -1.334 0.43388
## FrCepDenti.4.rec3-2 veces al dia       -1.675 0.31483
## FrCepDenti.4.rec4-3 veces al dia o mas -1.815 0.08916



modelo13.bin <- svyglm(ICDAS.categ ~ UsoDentifrico3.rec, diseniopost1, family = quasibinomial())



summary(modelo13.bin)
## 
## Call:
## svyglm(formula = ICDAS.categ ~ UsoDentifrico3.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              1.4975     0.1121   13.36  6.1e-16 ***
## UsoDentifrico3.rec2-No   0.0575     0.8224    0.07     0.94    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9971)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo13.bin)
##                         2.5 % 97.5 %
## (Intercept)             1.278  1.717
## UsoDentifrico3.rec2-No -1.554  1.669

modelo14.bin <- svyglm(ICDAS.categ ~ FluorProf.rec, diseniopost1, family = quasibinomial())

summary(modelo14.bin)
## 
## Call:
## svyglm(formula = ICDAS.categ ~ FluorProf.rec, diseniopost1, family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         1.4476     0.1787    8.10  8.4e-10 ***
## FluorProf.rec2-No   0.0678     0.2445    0.28     0.78    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9298)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo14.bin)
##                     2.5 % 97.5 %
## (Intercept)        1.0973 1.7979
## FluorProf.rec2-No -0.4114 0.5471


modelo15.bin <- svyglm(ICDAS.categ ~ RefrColaB.rec, diseniopost1, family = quasibinomial())

summary(modelo15.bin)
## 
## Call:
## svyglm(formula = ICDAS.categ ~ RefrColaB.rec, diseniopost1, family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                         1.586      0.256    6.20  3.4e-07 ***
## RefrColaB.rec2-A veces             -0.153      0.311   -0.49     0.62    
## RefrColaB.rec3-Nunca o raramente    0.103      0.340    0.30     0.76    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9886)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo15.bin)
##                                    2.5 % 97.5 %
## (Intercept)                       1.0843 2.0879
## RefrColaB.rec2-A veces           -0.7626 0.4561
## RefrColaB.rec3-Nunca o raramente -0.5625 0.7692


modelo16.bin <- svyglm(ICDAS.categ ~ MateDulceB.rec, diseniopost1, family = quasibinomial())

summary(modelo16.bin)
## 
## Call:
## svyglm(formula = ICDAS.categ ~ MateDulceB.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                          2.348      0.424    5.54  2.6e-06 ***
## MateDulceB.rec2-A veces             -0.142      0.549   -0.26    0.798    
## MateDulceB.rec3-Nunca o raramente   -1.172      0.444   -2.64    0.012 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9722)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo16.bin)
##                                    2.5 %  97.5 %
## (Intercept)                        1.518  3.1788
## MateDulceB.rec2-A veces           -1.219  0.9351
## MateDulceB.rec3-Nunca o raramente -2.043 -0.3019

modelo17.bin <- svyglm(ICDAS.categ ~ GolosinasB.rec, diseniopost1, family = quasibinomial())

summary(modelo17.bin)
## 
## Call:
## svyglm(formula = ICDAS.categ ~ GolosinasB.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                          1.810      0.284    6.37    2e-07 ***
## GolosinasB.rec2-A veces             -0.372      0.273   -1.36     0.18    
## GolosinasB.rec3-Nunca o raramente   -0.440      0.357   -1.23     0.23    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9766)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo17.bin)
##                                     2.5 % 97.5 %
## (Intercept)                        1.2527 2.3664
## GolosinasB.rec2-A veces           -0.9067 0.1627
## GolosinasB.rec3-Nunca o raramente -1.1398 0.2598


modelo19.bin <- svyglm(ICDAS.categ ~ Masas.DulcesB.rec, diseniopost1, family = quasibinomial())

summary(modelo19.bin)
## 
## Call:
## svyglm(formula = ICDAS.categ ~ Masas.DulcesB.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)                             2.087      0.229    9.13  5.1e-11
## Masas.DulcesB.rec2-A veces             -0.688      0.256   -2.68    0.011
## Masas.DulcesB.rec3-Nunca o raramente   -0.668      0.334   -2.00    0.053
##                                         
## (Intercept)                          ***
## Masas.DulcesB.rec2-A veces           *  
## Masas.DulcesB.rec3-Nunca o raramente .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9852)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo19.bin)
##                                       2.5 %   97.5 %
## (Intercept)                           1.639  2.53528
## Masas.DulcesB.rec2-A veces           -1.190 -0.18565
## Masas.DulcesB.rec3-Nunca o raramente -1.324 -0.01301


modelo20.bin <- svyglm(ICDAS.categ ~ UltmVisita1.rec, diseniopost1, family = quasibinomial())

summary(modelo20.bin)
## 
## Call:
## svyglm(formula = ICDAS.categ ~ UltmVisita1.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                        Estimate Std. Error t value
## (Intercept)                               1.257      0.116   10.84
## UltmVisita1.rec2- años atrás              1.266      0.331    3.82
## UltmVisita1.rec3-Nunca fue al dentista    1.483      0.445    3.33
##                                        Pr(>|t|)    
## (Intercept)                             4.8e-13 ***
## UltmVisita1.rec2- años atrás            0.00049 ***
## UltmVisita1.rec3-Nunca fue al dentista  0.00196 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9785)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo20.bin)
##                                         2.5 % 97.5 %
## (Intercept)                            1.0300  1.485
## UltmVisita1.rec2- años atrás           0.6171  1.916
## UltmVisita1.rec3-Nunca fue al dentista 0.6109  2.355





modelo21.bin <- svyglm(ICDAS.categ ~ IGS.rec1, diseniopost1, family = quasibinomial())


summary(modelo21.bin)
## 
## Call:
## svyglm(formula = ICDAS.categ ~ IGS.rec1, diseniopost1, family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            1.4832     0.1988    7.46  6.9e-09 ***
## IGS.rec12-De 20 a 60   0.0336     0.2883    0.12     0.91    
## IGS.rec13-Mas de 60    0.0683     0.2415    0.28     0.78    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo21.bin)
##                        2.5 % 97.5 %
## (Intercept)           1.0936 1.8729
## IGS.rec12-De 20 a 60 -0.5314 0.5986
## IGS.rec13-Mas de 60  -0.4051 0.5416



modelo22.bin <- svyglm(ICDAS.categ ~ Nive.Educativo.de.la.Madre2.rec, diseniopost1, 
    family = quasibinomial())

summary(modelo22.bin)
## 
## Call:
## svyglm(formula = ICDAS.categ ~ Nive.Educativo.de.la.Madre2.rec, 
##     diseniopost1, family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                                     Estimate Std. Error
## (Intercept)                                            0.832      0.195
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL           0.744      0.248
## Nive.Educativo.de.la.Madre2.rec3-ELEMENTARY SCHOOL     1.531      0.338
##                                                     t value Pr(>|t|)    
## (Intercept)                                            4.26  0.00014 ***
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL           2.99  0.00488 ** 
## Nive.Educativo.de.la.Madre2.rec3-ELEMENTARY SCHOOL     4.53    6e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.975)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo22.bin)
##                                                      2.5 % 97.5 %
## (Intercept)                                         0.4490  1.215
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL        0.2571  1.231
## Nive.Educativo.de.la.Madre2.rec3-ELEMENTARY SCHOOL  0.8677  2.194