##Part 1: Analysis
##################### construct data frame
student_stress = data.frame(student = seq(1, 10), time1 = c(5, 7, 4, 6,
8, 4, 5, 8, 4, 6), time2 = c(6, 4, 7, 6, 7, 4, 7, 7, 4, 6), time3 = c(6,
7, 8, 6, 9, 5, 9, 8, 5, 9))
#####################
####################### compute contrast codes time_lin -> -1 if time1, 0 if time2, +1 if
####################### time3 time_quad -> -1 if time1, +2 if time2, -1 if time3
student_stress$time_lin = (-1 * (student_stress$time1) + 1 * (student_stress$time3))/sqrt(2)
student_stress$time_quad = (-1 * (student_stress$time1) + 2 * (student_stress$time2) -
1 * (student_stress$time3))/sqrt(6)
# compute w0
student_stress$w0 = (student_stress$time1 + student_stress$time2 + student_stress$time3)/sqrt(3)
#######################
# model testing linear effects
model.time_lin = lm(student_stress$time_lin ~ 1)
mcSummary(model.time_lin)
## Loading required package: car
## Warning: package 'car' was built under R version 3.6.3
## Loading required package: carData
## Warning: package 'carData' was built under R version 3.6.3
## lm(formula = student_stress$time_lin ~ 1)
##
## Omnibus ANOVA
## SS df MS EtaSq F p
## Model 0.00 0 Inf 0
## Error 11.25 9 1.25
## Corr Total 11.25 9 1.25
##
## RMSE AdjEtaSq
## 1.118 0
##
## Coefficients
## Est StErr t SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) 1.061 0.354 3 11.25 0.5 NA 0.261 1.86 0.015
# model testing quadratic effects
model.time_quad = lm(student_stress$time_quad ~ 1)
mcSummary(model.time_quad)
## lm(formula = student_stress$time_quad ~ 1)
##
## Omnibus ANOVA
## SS df MS EtaSq F p
## Model 0.000 0 Inf 0
## Error 8.017 9 0.891
## Corr Total 8.017 9 0.891
##
## RMSE AdjEtaSq
## 0.944 0
##
## Coefficients
## Est StErr t SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) -0.531 0.298 -1.778 2.817 0.26 NA -1.206 0.144 0.109
# model assessing between-group variance
model.w0 = lm(student_stress$w0 ~ 1)
mcSummary(model.w0)
## lm(formula = student_stress$w0 ~ 1)
##
## Omnibus ANOVA
## SS df MS EtaSq F p
## Model 0.000 0 Inf 0
## Error 42.033 9 4.67
## Corr Total 42.033 9 4.67
##
## RMSE AdjEtaSq
## 2.161 0
##
## Coefficients
## Est StErr t SSR(3) EtaSq tol CI_2.5 CI_97.5 p
## (Intercept) 10.796 0.683 15.798 1165.633 0.965 NA 9.25 12.342 0
library(kableExtra)
## Warning: package 'kableExtra' was built under R version 3.6.3
################################################### pull results from output to construct source table
mySource = data.frame(source = c("Between", "Within", "day.lin", "day.lin-by-p",
"day.quad", "day.quad-by-p", "Total - within", "Total - overall"),
b = c("-", "-", 1.061, "-", -0.531, "-", "-", "-"), SS = c(42.033,
"-", 11.25, 11.25, 2.817, 8.017, 33.33, 108.7), df = c(9, "-",
1, 9, 1, 9, 20, 29), MS = c(4.67, "-", 11.25, 1.25, 2.817, 0.891,
1.665, 3.75), F = c("-", "-", 9, "-", 3.16, "-", "-", "-"), PRE = c("-",
"-", 0.5, "-", 0.26, "-", "-", "-"), p = c("-", "-", 0.015, "-",
0.109, "-", "-", "-"))
knitr::kable(mySource, digits = 3, align = "lcccc") %>% kable_styling("striped")
| source | b | SS | df | MS | F | PRE | p |
|---|---|---|---|---|---|---|---|
| Between |
|
42.033 | 9 | 4.67 |
|
|
|
| Within |
|
|
|
|
|
|
|
| day.lin | 1.061 | 11.25 | 1 | 11.25 | 9 | 0.5 | 0.015 |
| day.lin-by-p |
|
11.25 | 9 | 1.25 |
|
|
|
| day.quad | -0.531 | 2.817 | 1 | 2.817 | 3.16 | 0.26 | 0.109 |
| day.quad-by-p |
|
8.017 | 9 | 0.891 |
|
|
|
| Total - within |
|
33.33 | 20 | 1.665 |
|
|
|
| Total - overall |
|
108.7 | 29 | 3.75 |
|
|
|
##Part 2: Summary
To assess the linear and quadratic effects of testing period (that is, before each of the first midterm, second midterm and final) on student stress levels, a one-way, within-group, repeated-measures ANOVA was conducted. In this model, testing period considered within each student exhibited significant linear effects on stress levels (b = 1.061, F = 9, PRE = .5, p = .015), such that students reporting prior to the first midterm showed reduced stress levels (M = 5.7) compared to those reporting before the final (M = 7.2). However, no significant quadratic effects (b = -.531, F = 3.16, PRE = .26, p = .109) were detected.