#Exploring Numerical data
#load package
library(ggplot2)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
#dataset for 'cars'
cars=read.csv("C:/Users/ELCOT/Desktop/DSAC/R Programming/DataSet/cars.csv",header=T)
str(cars)
## 'data.frame':    428 obs. of  19 variables:
##  $ name       : chr  "Chevrolet Aveo 4dr" "Chevrolet Aveo LS 4dr hatch" "Chevrolet Cavalier 2dr" "Chevrolet Cavalier 4dr" ...
##  $ sports_car : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
##  $ suv        : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
##  $ wagon      : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
##  $ minivan    : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
##  $ pickup     : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
##  $ all_wheel  : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
##  $ rear_wheel : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
##  $ msrp       : int  11690 12585 14610 14810 16385 13670 15040 13270 13730 15460 ...
##  $ dealer_cost: int  10965 11802 13697 13884 15357 12849 14086 12482 12906 14496 ...
##  $ eng_size   : num  1.6 1.6 2.2 2.2 2.2 2 2 2 2 2 ...
##  $ ncyl       : int  4 4 4 4 4 4 4 4 4 4 ...
##  $ horsepwr   : int  103 103 140 140 140 132 132 130 110 130 ...
##  $ city_mpg   : int  28 28 26 26 26 29 29 26 27 26 ...
##  $ hwy_mpg    : int  34 34 37 37 37 36 36 33 36 33 ...
##  $ weight     : int  2370 2348 2617 2676 2617 2581 2626 2612 2606 2606 ...
##  $ wheel_base : int  98 98 104 104 104 105 105 103 103 103 ...
##  $ length     : int  167 153 183 183 183 174 174 168 168 168 ...
##  $ width      : int  66 66 69 68 69 67 67 67 67 67 ...
View(cars)

#Visualize Histogram for city_mpg and sub_graph wrt sport Utility Vechicle
cars %>% ggplot(aes(city_mpg))+geom_histogram()+facet_wrap(vars(suv))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 14 rows containing non-finite values (stat_bin).

#Filter cars with 4,6,8 Cylinders
cars %>% filter(ncyl==c(4,6,8))
## Warning in ncyl == c(4, 6, 8): longer object length is not a multiple of shorter
## object length
##                                             name sports_car   suv wagon minivan
## 1                             Chevrolet Aveo 4dr      FALSE FALSE FALSE   FALSE
## 2                         Chevrolet Cavalier 4dr      FALSE FALSE FALSE   FALSE
## 3                             Dodge Neon SXT 4dr      FALSE FALSE FALSE   FALSE
## 4                              Ford Focus SE 4dr      FALSE FALSE FALSE   FALSE
## 5                             Honda Civic HX 2dr      FALSE FALSE FALSE   FALSE
## 6                          Hyundai Accent GL 4dr      FALSE FALSE FALSE   FALSE
## 7                         Hyundai Elantra GT 4dr      FALSE FALSE FALSE   FALSE
## 8                             Kia Rio 4dr manual      FALSE FALSE FALSE   FALSE
## 9                       Kia Spectra GS 4dr hatch      FALSE FALSE FALSE   FALSE
## 10                                   Mini Cooper      FALSE FALSE FALSE   FALSE
## 11                         Nissan Sentra 1.8 4dr      FALSE FALSE FALSE   FALSE
## 12                               Saturn Ion1 4dr      FALSE FALSE FALSE   FALSE
## 13                    Saturn lon2 quad coupe 2dr      FALSE FALSE FALSE   FALSE
## 14                             Suzuki Aeno S 4dr      FALSE FALSE FALSE   FALSE
## 15                         Suzuki Forenza EX 4dr      FALSE FALSE FALSE   FALSE
## 16                         Toyota Corolla LE 4dr      FALSE FALSE FALSE   FALSE
## 17                               Toyota Echo 4dr      FALSE FALSE FALSE   FALSE
## 18                      Buick Century Custom 4dr      FALSE FALSE FALSE   FALSE
## 19                          Chevrolet Malibu 4dr      FALSE FALSE FALSE   FALSE
## 20                       Chevrolet Malibu LS 4dr      FALSE FALSE FALSE   FALSE
## 21                       Chrysler PT Cruiser 4dr      FALSE FALSE FALSE   FALSE
## 22                         Dodge Intrepid SE 4dr      FALSE FALSE FALSE   FALSE
## 23                          Dodge Stratus SE 4dr      FALSE FALSE FALSE   FALSE
## 24                            Honda Civic EX 4dr      FALSE FALSE FALSE   FALSE
## 25                        Hyundai Sonata GLS 4dr      FALSE FALSE FALSE   FALSE
## 26           Mitsubishi Lancer OZ Rally 4dr auto      FALSE FALSE FALSE   FALSE
## 27                       Oldsmobile Alero GX 2dr      FALSE FALSE FALSE   FALSE
## 28                       Pontiac Grand Am GT 2dr      FALSE FALSE FALSE   FALSE
## 29                       Pontiac Sunfire 1SC 2dr      FALSE FALSE FALSE   FALSE
## 30                             Saturn L300-2 4dr      FALSE FALSE FALSE   FALSE
## 31                           Subaru Legacy L 4dr      FALSE FALSE FALSE   FALSE
## 32                          Suzuki Verona LX 4dr      FALSE FALSE FALSE   FALSE
## 33               Toyota Prius 4dr (gas/electric)      FALSE FALSE FALSE   FALSE
## 34                  Volkswagen Jetta GLS TDI 4dr      FALSE FALSE FALSE   FALSE
## 35                                 Acura TSX 4dr      FALSE FALSE FALSE   FALSE
## 36                            Buick Regal LS 4dr      FALSE FALSE FALSE   FALSE
## 37                       Chevrolet Impala SS 4dr      FALSE FALSE FALSE   FALSE
## 38                             Chrysler 300M 4dr      FALSE FALSE FALSE   FALSE
## 39                    Ford Crown Victoria LX 4dr      FALSE FALSE FALSE   FALSE
## 40                        Honda Accord EX V6 2dr      FALSE FALSE FALSE   FALSE
## 41                              Infiniti G35 4dr      FALSE FALSE FALSE   FALSE
## 42                                Kia Amanti 4dr      FALSE FALSE FALSE   FALSE
## 43          Mercury Grand Marquis LS Premium 4dr      FALSE FALSE FALSE   FALSE
## 44                    Mitsubishi Diamante LS 4dr      FALSE FALSE FALSE   FALSE
## 45                          Nissan Maxima SE 4dr      FALSE FALSE FALSE   FALSE
## 46                    Pontiac Grand Prix GT2 4dr      FALSE FALSE FALSE   FALSE
## 47              Subaru Outback Limited Sedan 4dr      FALSE FALSE FALSE   FALSE
## 48                         Subaru Outback H6 4dr      FALSE FALSE FALSE   FALSE
## 49                Toyota Camry Solara SLE V6 2dr      FALSE FALSE FALSE   FALSE
## 50     Volkswagen New Beetle GLS convertible 2dr      FALSE FALSE FALSE   FALSE
## 51                  Audi A4 3.0 Quattro 4dr auto      FALSE FALSE FALSE   FALSE
## 52                                 BMW 325Ci 2dr      FALSE FALSE FALSE   FALSE
## 53                                  BMW 330i 4dr      FALSE FALSE FALSE   FALSE
## 54                                  BMW 525i 4dr      FALSE FALSE FALSE   FALSE
## 55                          Cadillac CTS VVT 4dr      FALSE FALSE FALSE   FALSE
## 56                         Jaguar X-Type 3.0 4dr      FALSE FALSE FALSE   FALSE
## 57                         Lexus IS 300 4dr auto      FALSE FALSE FALSE   FALSE
## 58                        Mercedes-Benz C240 4dr      FALSE FALSE FALSE   FALSE
## 59                        Mercedes-Benz C320 4dr      FALSE FALSE FALSE   FALSE
## 60                    Pontiac Bonneville GXP 4dr      FALSE FALSE FALSE   FALSE
## 61                        Saab 9-3 Arc Sport 4dr      FALSE FALSE FALSE   FALSE
## 62                             Saab 9-5 Aero 4dr      FALSE FALSE FALSE   FALSE
## 63                    Subaru Outback H-6 VDC 4dr      FALSE FALSE FALSE   FALSE
## 64                              Acura 3.5 RL 4dr      FALSE FALSE FALSE   FALSE
## 65           Audi A4 3.0 Quattro convertible 2dr      FALSE FALSE FALSE   FALSE
## 66                           Audi S4 Quattro 4dr      FALSE FALSE FALSE   FALSE
## 67                                  BMW 530i 4dr      FALSE FALSE FALSE   FALSE
## 68                                 BMW 545iA 4dr      FALSE FALSE FALSE   FALSE
## 69                      Cadillac Seville SLS 4dr      FALSE FALSE FALSE   FALSE
## 70                        Jaguar Vanden Plas 4dr      FALSE FALSE FALSE   FALSE
## 71                       Lincoln LS V8 Sport 4dr      FALSE FALSE FALSE   FALSE
## 72                 Lincoln Town Car Ultimate 4dr      FALSE FALSE FALSE   FALSE
## 73                     Mercedes-Benz C32 AMG 4dr      FALSE FALSE FALSE   FALSE
## 74                       Mercedes-Benz CL500 2dr      FALSE FALSE FALSE   FALSE
## 75  Mercedes-Benz CLK320 coupe 2dr (convertible)      FALSE FALSE FALSE   FALSE
## 76  Mercedes-Benz CLK500 coupe 2dr (convertible)      FALSE FALSE FALSE   FALSE
## 77                        Mercedes-Benz S430 4dr      FALSE FALSE FALSE   FALSE
## 78                              Volvo S80 T6 4dr      FALSE FALSE FALSE   FALSE
## 79                              BMW M3 coupe 2dr       TRUE FALSE FALSE   FALSE
## 80                   BMW Z4 convertible 3.0i 2dr       TRUE FALSE FALSE   FALSE
## 81                  Cadillac XLR convertible 2dr       TRUE FALSE FALSE   FALSE
## 82                Ford Mustang 2dr (convertible)       TRUE FALSE FALSE   FALSE
## 83       Ford Mustang GT Premium convertible 2dr       TRUE FALSE FALSE   FALSE
## 84                          Jaguar XKR coupe 2dr       TRUE FALSE FALSE   FALSE
## 85           Mazda MX-5 Miata LS convertible 2dr       TRUE FALSE FALSE   FALSE
## 86          Mercedes-Benz SLK230 convertible 2dr       TRUE FALSE FALSE   FALSE
## 87                   Mercedes-Benz SLK32 AMG 2dr       TRUE FALSE FALSE   FALSE
## 88                   Porsche 911 Targa coupe 2dr       TRUE FALSE FALSE   FALSE
## 89             Porsche Boxster S convertible 2dr       TRUE FALSE FALSE   FALSE
## 90                    Subaru Impreza WRX STi 4dr       TRUE FALSE FALSE   FALSE
## 91                    Chevrolet Suburban 1500 LT      FALSE  TRUE FALSE   FALSE
## 92                             GMC Envoy XUV SLE      FALSE  TRUE FALSE   FALSE
## 93                            CMC Yukon 1500 SLE      FALSE  TRUE FALSE   FALSE
## 94                            Toyota Sequoia SR5      FALSE  TRUE FALSE   FALSE
## 95                                   BMW X3 3.0i      FALSE  TRUE FALSE   FALSE
## 96                                   BMW X5 4.4i      FALSE  TRUE FALSE   FALSE
## 97                           Buick Rendezvous CX      FALSE  TRUE FALSE   FALSE
## 98                                Honda Pilot LX      FALSE  TRUE FALSE   FALSE
## 99                                Kia Sorento LX      FALSE  TRUE FALSE   FALSE
## 100                   Land Rover Range Rover HSE      FALSE  TRUE FALSE   FALSE
## 101                          Mercedes-Benz ML500      FALSE  TRUE FALSE   FALSE
## 102                      Mitsubishi Endeavor XLS      FALSE  TRUE FALSE   FALSE
## 103                               Pontiac Aztekt      FALSE  TRUE FALSE   FALSE
## 104                            Porsche Cayenne S      FALSE  TRUE FALSE   FALSE
## 105                                   Saturn VUE      FALSE  TRUE FALSE   FALSE
## 106                               Suzuki XL-7 EX      FALSE  TRUE FALSE   FALSE
## 107                            Chevrolet Tracker      FALSE  TRUE FALSE   FALSE
## 108                                Honda CR-V LX      FALSE  TRUE FALSE   FALSE
## 109                           Jeep Liberty Sport      FALSE  TRUE FALSE   FALSE
## 110         Jeep Wrangler Sahara convertible 2dr      FALSE  TRUE FALSE   FALSE
## 111                      Land Rover Discovery SE      FALSE  TRUE FALSE   FALSE
## 112                             Suzuki Vitara LX      FALSE  TRUE FALSE   FALSE
## 113                            Chrysler Pacifica      FALSE FALSE  TRUE   FALSE
## 114                                Infiniti FX35      FALSE FALSE  TRUE   FALSE
## 115                                Infiniti FX45      FALSE FALSE  TRUE   FALSE
## 116                                Kia Rio Cinco      FALSE FALSE  TRUE   FALSE
## 117                      Lexus IS 300 SportCross      FALSE FALSE  TRUE   FALSE
## 118               Mitsubishi Lancer Sportback LS      FALSE FALSE  TRUE   FALSE
## 119                             Nissan Murano SL      FALSE FALSE  TRUE   FALSE
## 120                                Saab 9-5 Aero      FALSE FALSE  TRUE   FALSE
## 121                            Subaru Forester X      FALSE FALSE  TRUE   FALSE
## 122                             Toyota Matrix XR      FALSE FALSE  TRUE   FALSE
## 123                         Chevrolet Venture LS      FALSE FALSE FALSE    TRUE
## 124                               GMC Safari SLE      FALSE FALSE FALSE    TRUE
## 125                                Kia Sedona LX      FALSE FALSE FALSE    TRUE
## 126                               Nissan Quest S      FALSE FALSE FALSE    TRUE
## 127                              Pontiac Montana      FALSE FALSE FALSE    TRUE
## 128                    Toyota Sienna XLE Limited      FALSE FALSE FALSE    TRUE
## 129                        Cadillac Escalade EXT      FALSE FALSE FALSE   FALSE
## 130                Dodge Ram 1500 Regular Cab ST      FALSE FALSE FALSE   FALSE
## 131                    Ford F-150 Regular Cab XL      FALSE FALSE FALSE   FALSE
## 132                   Mazda B2300 SX Regular Cab      FALSE FALSE FALSE   FALSE
## 133                      Mazda B4000 SE Cab Plus      FALSE FALSE FALSE   FALSE
## 134              Toyota Tundra Access Cab V6 SR5      FALSE FALSE FALSE   FALSE
##     pickup all_wheel rear_wheel  msrp dealer_cost eng_size ncyl horsepwr
## 1    FALSE     FALSE      FALSE 11690       10965      1.6    4      103
## 2    FALSE     FALSE      FALSE 14810       13884      2.2    4      140
## 3    FALSE     FALSE      FALSE 15040       14086      2.0    4      132
## 4    FALSE     FALSE      FALSE 15460       14496      2.0    4      130
## 5    FALSE     FALSE      FALSE 14170       12996      1.7    4      117
## 6    FALSE     FALSE      FALSE 11839       11116      1.6    4      103
## 7    FALSE     FALSE      FALSE 15389       14207      2.0    4      138
## 8    FALSE     FALSE      FALSE 10280        9875      1.6    4      104
## 9    FALSE     FALSE      FALSE 13580       12830      1.8    4      124
## 10   FALSE     FALSE      FALSE 16999       15437      1.6    4      115
## 11   FALSE     FALSE      FALSE 12740       12205      1.8    4      126
## 12   FALSE     FALSE      FALSE 10995       10319      2.2    4      140
## 13   FALSE     FALSE      FALSE 14850       13904      2.2    4      140
## 14   FALSE     FALSE      FALSE 12884       12719      2.3    4      155
## 15   FALSE     FALSE      FALSE 15568       15378      2.0    4      119
## 16   FALSE     FALSE      FALSE 15295       13889      1.8    4      130
## 17   FALSE     FALSE      FALSE 11290       10642      1.5    4      108
## 18   FALSE     FALSE      FALSE 22180       20351      3.1    6      175
## 19   FALSE     FALSE      FALSE 18995       17434      2.2    4      145
## 20   FALSE     FALSE      FALSE 20370       18639      3.5    6      200
## 21   FALSE     FALSE      FALSE 17985       16919      2.4    4      150
## 22   FALSE     FALSE      FALSE 22035       20502      2.7    6      200
## 23   FALSE     FALSE      FALSE 20220       18821      2.4    4      150
## 24   FALSE     FALSE      FALSE 17750       16265      1.7    4      127
## 25   FALSE     FALSE      FALSE 19339       17574      2.7    6      170
## 26   FALSE     FALSE      FALSE 17232       16196      2.0    4      120
## 27   FALSE     FALSE      FALSE 18825       17642      2.2    4      140
## 28   FALSE     FALSE      FALSE 22450       20595      3.4    6      175
## 29   FALSE     FALSE      FALSE 17735       16369      2.2    4      140
## 30   FALSE     FALSE      FALSE 21410       19801      3.0    6      182
## 31   FALSE      TRUE      FALSE 20445       18713      2.5    4      165
## 32   FALSE     FALSE      FALSE 17262       17053      2.5    6      155
## 33   FALSE     FALSE      FALSE 20510       18926      1.5    4      110
## 34   FALSE     FALSE      FALSE 21055       19638      1.9    4      100
## 35   FALSE     FALSE      FALSE 26990       24647      2.4    4      200
## 36   FALSE     FALSE      FALSE 24895       22835      3.8    6      200
## 37   FALSE     FALSE      FALSE 27995       25672      3.8    6      240
## 38   FALSE     FALSE      FALSE 29865       27797      3.5    6      250
## 39   FALSE     FALSE       TRUE 27370       25105      4.6    8      224
## 40   FALSE     FALSE      FALSE 26960       24304      3.0    6      240
## 41   FALSE     FALSE       TRUE 28495       26157      3.5    6      260
## 42   FALSE     FALSE      FALSE 26000       23764      3.5    6      195
## 43   FALSE     FALSE       TRUE 29595       27148      4.6    8      224
## 44   FALSE     FALSE      FALSE 29282       27250      3.5    6      205
## 45   FALSE     FALSE      FALSE 27490       25182      3.5    6      265
## 46   FALSE     FALSE      FALSE 24295       22284      3.8    6      200
## 47   FALSE      TRUE      FALSE 27145       24687      2.5    4      165
## 48   FALSE      TRUE      FALSE 29345       26660      3.0    6      212
## 49   FALSE     FALSE      FALSE 26510       23908      3.3    6      225
## 50   FALSE     FALSE      FALSE 23215       21689      2.0    4      115
## 51   FALSE      TRUE      FALSE 34480       31388      3.0    6      220
## 52   FALSE     FALSE       TRUE 30795       28245      2.5    6      184
## 53   FALSE     FALSE       TRUE 35495       32525      3.0    6      225
## 54   FALSE     FALSE       TRUE 39995       36620      2.5    6      184
## 55   FALSE     FALSE       TRUE 30835       28575      3.6    6      255
## 56   FALSE      TRUE      FALSE 33995       30995      3.0    6      227
## 57   FALSE     FALSE       TRUE 32415       28611      3.0    6      215
## 58   FALSE     FALSE       TRUE 32280       30071      2.6    6      168
## 59   FALSE     FALSE       TRUE 37630       35046      3.2    6      215
## 60   FALSE     FALSE      FALSE 35995       32997      4.6    8      275
## 61   FALSE     FALSE      FALSE 30860       29269      2.0    4      210
## 62   FALSE     FALSE      FALSE 39465       37721      2.3    4      250
## 63   FALSE      TRUE      FALSE 31545       28603      3.0    6      212
## 64   FALSE     FALSE      FALSE 43755       39014      3.5    6      225
## 65   FALSE      TRUE      FALSE 44240       40075      3.0    6      220
## 66   FALSE      TRUE      FALSE 48040       43556      4.2    8      340
## 67   FALSE     FALSE       TRUE 44995       41170      3.0    6      225
## 68   FALSE     FALSE       TRUE 54995       50270      4.4    8      325
## 69   FALSE     FALSE      FALSE 47955       43841      4.6    8      275
## 70   FALSE     FALSE       TRUE 68995       62846      4.2    8      294
## 71   FALSE     FALSE       TRUE 40095       36809      3.9    8      280
## 72   FALSE     FALSE       TRUE 44925       41217      4.6    8      239
## 73   FALSE     FALSE       TRUE 52120       48522      3.2    6      349
## 74   FALSE     FALSE       TRUE 94820       88324      5.0    8      302
## 75   FALSE     FALSE       TRUE 45707       41966      3.2    6      215
## 76   FALSE     FALSE       TRUE 52800       49104      5.0    8      302
## 77   FALSE     FALSE       TRUE 74320       69168      4.3    8      275
## 78   FALSE     FALSE      FALSE 45210       42573      2.9    6      268
## 79   FALSE     FALSE       TRUE 48195       44170      3.2    6      333
## 80   FALSE     FALSE       TRUE 41045       37575      3.0    6      225
## 81   FALSE     FALSE       TRUE 76200       70546      4.6    8      320
## 82   FALSE     FALSE       TRUE 18345       16943      3.8    6      193
## 83   FALSE     FALSE       TRUE 29380       26875      4.6    8      260
## 84   FALSE     FALSE       TRUE 81995       74676      4.2    8      390
## 85   FALSE     FALSE       TRUE 25193       23285      1.8    4      142
## 86   FALSE     FALSE       TRUE 40320       37548      2.3    4      192
## 87   FALSE     FALSE       TRUE 56170       52289      3.2    6      349
## 88   FALSE     FALSE       TRUE 76765       67128      3.6    6      315
## 89   FALSE     FALSE       TRUE 52365       45766      3.2    6      258
## 90   FALSE      TRUE      FALSE 31545       29130      2.5    4      300
## 91   FALSE     FALSE      FALSE 42735       37422      5.3    8      295
## 92   FALSE     FALSE      FALSE 31890       28922      4.2    6      275
## 93   FALSE     FALSE      FALSE 35725       31361      4.8    8      285
## 94   FALSE      TRUE      FALSE 35695       31827      4.7    8      240
## 95   FALSE      TRUE      FALSE 37000       33873      3.0    6      225
## 96   FALSE      TRUE      FALSE 52195       47720      4.4    8      325
## 97   FALSE     FALSE      FALSE 26545       24085      3.4    6      185
## 98   FALSE      TRUE      FALSE 27560       24843      3.5    6      240
## 99   FALSE     FALSE      FALSE 19635       18630      3.5    6      192
## 100  FALSE      TRUE      FALSE 72250       65807      4.4    8      282
## 101  FALSE      TRUE      FALSE 46470       43268      5.0    8      288
## 102  FALSE      TRUE      FALSE 30492       28330      3.8    6      215
## 103  FALSE     FALSE      FALSE 21595       19810      3.4    6      185
## 104  FALSE      TRUE      FALSE 56665       49865      4.5    8      340
## 105  FALSE      TRUE      FALSE 20585       19238      2.2    4      143
## 106  FALSE     FALSE      FALSE 23699       22307      2.7    6      185
## 107  FALSE     FALSE      FALSE 20255       19108      2.5    6      165
## 108  FALSE      TRUE      FALSE 19860       18419      2.4    4      160
## 109  FALSE      TRUE      FALSE 20130       18973      2.4    4      150
## 110  FALSE      TRUE      FALSE 25520       23275      4.0    6      190
## 111  FALSE      TRUE      FALSE 39250       35777      4.6    8      217
## 112  FALSE      TRUE      FALSE 17163       16949      2.5    6      165
## 113  FALSE     FALSE       TRUE 31230       28725      3.5    6      250
## 114  FALSE     FALSE       TRUE 34895       31756      3.5    6      280
## 115  FALSE      TRUE      FALSE 36395       33121      4.5    8      315
## 116  FALSE     FALSE      FALSE 11905       11410      1.6    4      104
## 117  FALSE     FALSE       TRUE 32455       28647      3.0    6      215
## 118  FALSE     FALSE      FALSE 17495       16295      2.4    4      160
## 119  FALSE     FALSE       TRUE 28739       27300      3.5    6      245
## 120  FALSE     FALSE      FALSE 40845       38376      2.3    4      250
## 121  FALSE      TRUE      FALSE 21445       19646      2.5    4      165
## 122  FALSE     FALSE      FALSE 16695       15156      1.8    4      130
## 123  FALSE     FALSE      FALSE 27020       24518      3.4    6      185
## 124  FALSE     FALSE       TRUE 25640       23215      4.3    6      190
## 125  FALSE     FALSE      FALSE 20615       19400      3.5    6      195
## 126  FALSE     FALSE      FALSE 24780       22958      3.5    6      240
## 127  FALSE     FALSE      FALSE 23845       21644      3.4    6      185
## 128  FALSE     FALSE      FALSE 28800       25690      3.3    6      230
## 129   TRUE      TRUE      FALSE 52975       48541      6.0    8      345
## 130   TRUE     FALSE       TRUE 20215       18076      3.7    6      215
## 131   TRUE     FALSE       TRUE 22010       19490      4.6    8      231
## 132   TRUE     FALSE       TRUE 14840       14070      2.3    4      143
## 133   TRUE      TRUE      FALSE 22350       20482      4.0    6      207
## 134   TRUE      TRUE      FALSE 25935       23520      3.4    6      190
##     city_mpg hwy_mpg weight wheel_base length width
## 1         28      34   2370         98    167    66
## 2         26      37   2676        104    183    68
## 3         29      36   2626        105    174    67
## 4         26      33   2606        103    168    67
## 5         36      44   2500        103    175    67
## 6         29      33   2290         96    167    66
## 7         26      34   2635        103    178    68
## 8         26      33   2403         95    167    66
## 9         24      32   2686        101    178    68
## 10        28      37   2524         97    143    67
## 11        28      35   2513        100    178    67
## 12        26      35   2692        103    185    67
## 13        26      35   2751        103    185    68
## 14        25      31   2676         98    171    68
## 15        22      30   2756        102    177    68
## 16        32      40   2524        102    178    67
## 17        35      43   2055         93    163    65
## 18        20      30   3353        109    195    73
## 19        24      34   3174        106    188    70
## 20        22      30   3297        106    188    70
## 21        22      29   3101        103    169    67
## 22        21      29   3469        113    204    75
## 23        21      28   3175        108    191    71
## 24        32      37   2601        103    175    68
## 25        19      27   3217        106    187    72
## 26        NA      NA   2744        102    181    67
## 27        24      32   2946        107    187    70
## 28        20      29   3118        107    186    70
## 29        24      33   2771        104    182    68
## 30        20      28   3197        107    190    69
## 31        21      28   3285        104    184    69
## 32        20      27   3380        106    188    72
## 33        59      51   2890        106    175    68
## 34        38      46   3003         99    172    68
## 35        22      29   3230        105    183    69
## 36        20      30   3461        109    196    73
## 37        18      28   3606        111    200    73
## 38        18      27   3581        113    198    74
## 39        17      25   4057        115    212    78
## 40        21      30   3294        105    188    71
## 41        18      26   3336        112    187    69
## 42        17      25     NA        110    196    73
## 43        17      25   4052        115    212    78
## 44        18      25   3549        107    194    70
## 45        20      28   3473        111    194    72
## 46        20      30   3484        111    198    74
## 47        20      27   3495        104    184    69
## 48        19      26   3610        104    184    69
## 49        20      29   3439        107    193    72
## 50        24      30   3082         99    161    68
## 51        18      25   3627        104    179    70
## 52        20      29   3197        107    177    69
## 53        20      30   3285        107    176    69
## 54        19      28   3428        114    191    73
## 55        18      25   3694        113    190    71
## 56        18      25   3516        107    184    70
## 57        18      24   3285        105    177    68
## 58        20      25   3360        107    178    68
## 59        20      26   3450        107    178    68
## 60        NA      NA   3790        112    203    74
## 61        20      28   3175        105    183    69
## 62        21      29   3470        106    190    71
## 63        19      26   3630        104    184    69
## 64        18      24   3880        115    197    72
## 65        18      25   4013        105    180    70
## 66        14      20   3825        104    179    70
## 67        20      30   3472        114    191    73
## 68        18      26   3814        114    191    73
## 69        18      26   3992        112    201    75
## 70        18      28   3803        119    200    73
## 71        17      24   3768        115    194    73
## 72        17      25   4369        118    215    78
## 73        16      21   3540        107    178    68
## 74        16      24   4085        114    196    73
## 75        20      26   3770        107    183    69
## 76        17      22   3585        107    183    69
## 77        18      26   4160        122    203    73
## 78        19      26   3653        110    190    72
## 79        16      24   3415        108    177    70
## 80        21      29   2998         98    161    70
## 81        17      25   3647        106    178    72
## 82        20      29   3290        101    183    73
## 83        17      25   3347        101    183    73
## 84        16      23   3865        102    187    71
## 85        23      28   2387         89    156    66
## 86        21      29   3055         95    158    68
## 87        17      22   3220         95    158    68
## 88        18      26   3119         93    175    70
## 89        18      26   2911         95    170    70
## 90        18      24   3263        100    174    69
## 91        14      18   4947        130    219    79
## 92        15      19   4945        129    208    75
## 93        16      19   5042        116    199    79
## 94        14      17   5270        118    204    78
## 95        16      23   4023        110    180    73
## 96        16      22   4824        111    184    74
## 97        19      26   4024        112    187    74
## 98        17      22   4387        106    188    77
## 99        16      19   4112        107    180    73
## 100       12      16   5379        113    195    76
## 101       14      17   4874        111    183    72
## 102       17      21   4134        109    190    74
## 103       19      26   3779        108    182    74
## 104       14      18   4950        112    188    76
## 105       21      26   3381        107    181    72
## 106       18      22   3682        110    187    70
## 107       19      22   2866         98    163    67
## 108       21      25   3258        103    179    70
## 109       20      24   3826        104    174    72
## 110       16      19   3575         93    150    67
## 111       12      16   4576        100    185    74
## 112       19      22   3020         98    163    67
## 113       17      23   4675        116    199    79
## 114       16      22   4056        112    189    76
## 115       15      19   4309        112    189    76
## 116       26      33   2447         95    167    66
## 117       18      24   3410        105    177    68
## 118       NA      NA   3020        102    181    67
## 119       20      25   3801        111    188    74
## 120       19      29   3620        106    190    71
## 121       21      28   3090         99    175    68
## 122       29      36   2679        102    171    70
## 123       19      26   3699        112    187    72
## 124       16      20   4309        111    190    78
## 125       16      22   4802        115    194    75
## 126       19      26   4012        124    204    78
## 127       19      26   3803        112    187    72
## 128       19      27   4165        119    200    77
## 129       13      17   5879        130     NA    NA
## 130       16      21   4542        121     NA    NA
## 131       15      19   4788        126     NA    NA
## 132       24      29   2960        112     NA    NA
## 133       15      19   3571        126     NA    NA
## 134       14      17   4435        128     NA    NA
#create a box plot of city mpg by ncyl

cars %>% ggplot(aes(as.factor(ncyl),city_mpg))+geom_boxplot()
## Warning: Removed 14 rows containing non-finite values (stat_boxplot).

#create overlaid density plot for same data

cars %>% ggplot(aes(x=city_mpg,fill=as.factor(ncyl)))+geom_density(alpha=.3)
## Warning: Removed 14 rows containing non-finite values (stat_density).
## Warning: Groups with fewer than two data points have been dropped.
## Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning -
## Inf

#create hist of horsepwr
cars %>% ggplot(aes(horsepwr))+geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

#create hist of horsepwr with binwidth of 3.
cars %>% ggplot(aes(horsepwr))+geom_histogram(binwidth = 3)

#construct boxplot of msrp

cars %>% ggplot(aes(msrp))+geom_boxplot()

#exclude outliers from data more than 10000

cars %>% filter(msrp>10000) %>% ggplot(aes(msrp))+geom_boxplot()