To perform linear equations in R, we need to install a package called matlib. To install the package, write the command below:
#install.packages("matlib")
Load the package
library(matlib)
Suppose we have a linear system,
\[ \begin{alignat*}{7} 5x &&\; - \;&& 4y &&\; = \;&& -10 \\ -x &&\; + \;&& y &&\; = \;&& 2 \end{alignat*} \] that can be represented in a matrix form
\[ \begin{bmatrix} 5 & -4 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} -10 \\ 2 \end{bmatrix} \] that is, \[Ax=b\], and we have \[ x = A^{-1}b\]
A <- matrix(c(5, -4, -1, 1), 2, 2, TRUE)
b <- c(-10, 2)
showEqn(A, b)
## 5*x1 - 4*x2 = -10
## -1*x1 + 1*x2 = 2
Solve(A,b)
## x1 = -2
## x2 = 0
Use plotEqn() for equations with two-variable equations and use plotEqn3d for three-variable equations.
plotEqn(A,b)
## 5*x[1] - 4*x[2] = -10
## -x[1] + x[2] = 2
echelon(A,b)
## [,1] [,2] [,3]
## [1,] 1 0 -2
## [2,] 0 1 0
echelon(A, b, verbose=TRUE, fractions=TRUE)
##
## Initial matrix:
## [,1] [,2] [,3]
## [1,] 5 -4 -10
## [2,] -1 1 2
##
## row: 1
##
## multiply row 1 by 1/5
## [,1] [,2] [,3]
## [1,] 1 -4/5 -2
## [2,] -1 1 2
##
## multiply row 1 by 1 and add to row 2
## [,1] [,2] [,3]
## [1,] 1 -4/5 -2
## [2,] 0 1/5 0
##
## row: 2
##
## multiply row 2 by 5
## [,1] [,2] [,3]
## [1,] 1 -4/5 -2
## [2,] 0 1 0
##
## multiply row 2 by 4/5 and add to row 1
## [,1] [,2] [,3]
## [1,] 1 0 -2
## [2,] 0 1 0
echelon(A,b, verbose=TRUE)
##
## Initial matrix:
## [,1] [,2] [,3]
## [1,] 5 -4 -10
## [2,] -1 1 2
##
## row: 1
##
## multiply row 1 by 0.2
## [,1] [,2] [,3]
## [1,] 1 -0.8 -2
## [2,] -1 1.0 2
##
## multiply row 1 by 1 and add to row 2
## [,1] [,2] [,3]
## [1,] 1 -0.8 -2
## [2,] 0 0.2 0
##
## row: 2
##
## multiply row 2 by 5
## [,1] [,2] [,3]
## [1,] 1 -0.8 -2
## [2,] 0 1.0 0
##
## multiply row 2 by 0.8 and add to row 1
## [,1] [,2] [,3]
## [1,] 1 0 -2
## [2,] 0 1 0