{rstan} で 「状態空間時系列分析入門」 を再現したい。やっていること / 数式はテキストを参照。
リポジトリ: https://github.com/sinhrks/stan-statespace
library(devtools)
# devtools::install_github('hoxo-m/pforeach')
# devtools::install_github('sinhrks/ggfortify')
library(rstan)
library(pforeach)
library(ggplot2)
ggplot2::theme_set(theme_bw(base_family="HiraKakuProN-W3"))
library(ggfortify)
# モデルが収束しているか確認
is.converged <- function(stanfit) {
summarized <- summary(stanfit)
all(summarized$summary[, 'Rhat'] < 1.1)
}
# 値がだいたい近いか確認
is.almost.fitted <- function(result, expected, tolerance = 0.001) {
if (abs(result - expected) > tolerance) {
print(paste('Result is ', result))
return(FALSE)
} else {
return(TRUE)
}
}
ukdrivers <- read.table('../data/UKdriversKSI.txt', skip = 1)
ukdrivers <- ts(ukdrivers[[1]], start = c(1969, 1), frequency = 12)
ukdrivers <- log(ukdrivers)
線形回帰モデル。
model_file <- '../models/fig01_01.stan'
cat(paste(readLines(model_file)), sep = '\n')
data {
int<lower=1> n;
real y[n];
}
parameters {
# 係数
real slope;
# 切片
real intercept;
# 撹乱項
real<lower=0> sigma;
}
model {
for (t in 1:n){
y[t] ~ normal(intercept + slope * t, sigma);
}
}
y <- ukdrivers
standata <- within(list(), {
y <- as.vector(y)
n <- length(y)
})
stan_fit <- stan(file = model_file, chains = 0)
##
## TRANSLATING MODEL 'fig01_01' FROM Stan CODE TO C++ CODE NOW.
## COMPILING THE C++ CODE FOR MODEL 'fig01_01' NOW.
fit <- pforeach(i = 1:4, .final = sflist2stanfit)({
stan(fit = stan_fit, data = standata,
iter = 2000, chains = 1, seed = i)
})
stopifnot(is.converged(fit))
slope <- get_posterior_mean(fit, par = 'slope')[, 'mean-all chains']
intercept <- get_posterior_mean(fit, par = 'intercept')[, 'mean-all chains']
title <- paste('Figure 1.1. Scatter plot of the log of the number of UK drivers',
'KSI against time (in months), including regression line.', sep = '\n')
title <- paste('図 1.1 (月次)時間に対する英国ドライバーの',
'死傷者数の対数に回帰線を含めた散布図', sep = '\n')
# 原系列
p <- autoplot(y, ts.geom = 'point')
# stan
yhat <- ts(1:length(y) * slope + intercept,
start = start(y), frequency = frequency(y))
p <- autoplot(yhat, p = p, ts.colour = 'blue')
# 線形回帰 (lm)
df <- data.frame(y = y, x = 1:length(y))
fit.lm <- lm(y ~ x, data = df)
intercept.lm <- coefficients(fit.lm)[[1]]
slope.lm <- coefficients(fit.lm)[[2]]
lm.yhat <- ts(df$x * slope.lm + intercept.lm,
start = start(y), frequency = frequency(y))
p <- autoplot(lm.yhat, p = p, ts.colour = 'red', ts.linetype = 'dashed')
p + ggtitle(title)
title <- 'Figure 1.2. Log of the number of UK drivers KSI plotted as a time series.'
title <- '図 1.2 英国ドライバーの死傷者数の対数の時系列'
autoplot(y) + ggtitle(title)
title <- paste('Figure 1.3. Residuals of classical linear regression of the ',
'log of the number of UK drivers KSI on time.', sep = '\n')
title <- paste('図 1.3 時間に対する英国ドライバーの',
'死傷者数の対数の古典的線形型回帰の残差', sep = '\n')
autoplot(y - yhat, ts.linetype = 'dashed') + ggtitle(title)