Markdown that I’ll fill with plots and analysis pertaining to the Division / mvmt / segregation project.
Tables, then scatterplots of movement and residential based segregation
## Scatterplots
Showing association between residential and movment seg
## Warning: Removed 7 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 9 rows containing missing values (geom_point).
## Warning: Removed 2 rows containing missing values (geom_point).
### CBSAs
## Warning: Removed 34 rows containing missing values (geom_point).
## Warning: Removed 34 rows containing missing values (geom_point).
## Warning: Removed 33 rows containing missing values (geom_point).
## Warning: Removed 34 rows containing missing values (geom_point).
## Warning: Removed 33 rows containing missing values (geom_point).
### Places
## Warning: Removed 1676 rows containing missing values (geom_point).
## Warning: Removed 1676 rows containing missing values (geom_point).
## Warning: Removed 1726 rows containing missing values (geom_point).
## Warning: Removed 1726 rows containing missing values (geom_point).
## Warning: Removed 1726 rows containing missing values (geom_point).
## Warning: Removed 1726 rows containing missing values (geom_point).
Looks at “Truly isolated” regions where this term is defined as regions that have at least, say, 60% white/black residents and 60% isolation for white/black based on movement.
Number of CZs, CBSAs, Places that are “truly isolated” by various metrics
# drop tract-level table from list
divrs <- divs[!grepl("ct", names(divs))]
# Inflow -----------------
# inflow black isolation
divrs %>%
map_int(
~nrow( filter(.,
inflow.isol_black_truly_isolated) )
)## cbsa.divs cz.divs plc.divs
## 8 3 7
## cbsa.divs cz.divs plc.divs
## 827 666 192
# Residential ------------------
# residential black isolation
divrs %>%
map_int(
~nrow( filter(.,
residential.isol_black_truly_isolated) )
)## cbsa.divs cz.divs plc.divs
## 9 3 7
# residential white isolation
divrs %>%
map_int(
~nrow( filter(.,
residential.isol_white_truly_isolated) )
)## cbsa.divs cz.divs plc.divs
## 828 668 192
# Outflow -----------------------
# outflow black isolation
divrs %>%
map_int(
~nrow( filter(.,
outflow.isol_black_truly_isolated) )
)## cbsa.divs cz.divs plc.divs
## 8 3 6
# outflow white isolation
divrs %>%
map_int(
~nrow( filter(.,
outflow.isol_white_truly_isolated) )
)## cbsa.divs cz.divs plc.divs
## 767 632 152