Dissertation Analyses

load(file="/Users/meganwilliams/Desktop/Dissertation/StroopMixed.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/Allvars.rdata")
library(effects)
library(interactions)
library(rcompanion)
library(car)

Digit Span Backward - Psychological Aggression

Model 1

DSBlog1 <- glm(PsychAggress ~ DigitSpanBck + WRATtotal, data=Allvars,family = "binomial")
summary(DSBlog1)
## 
## Call:
## glm(formula = PsychAggress ~ DigitSpanBck + WRATtotal, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1328   0.4853   0.5220   0.5539   0.7214  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept)   0.93837    0.63316   1.482    0.138
## DigitSpanBck  0.03600    0.06181   0.582    0.560
## WRATtotal     0.01668    0.01691   0.987    0.324
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 502.89  on 638  degrees of freedom
## AIC: 508.89
## 
## Number of Fisher Scoring iterations: 4
exp(cbind(OR = coef(DSBlog1), confint(DSBlog1)))
##                    OR     2.5 %   97.5 %
## (Intercept)  2.555822 0.7637836 9.219778
## DigitSpanBck 1.036652 0.9202872 1.173106
## WRATtotal    1.016825 0.9831461 1.050716
########Compare to null model 
#Difference in Deviance
with(DSBlog1,null.deviance - deviance)
## [1] 2.512546
#Degrees of freedom for the difference between two models
with(DSBlog1,df.null - df.residual)
## [1] 2
#p-value
with(DSBlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.2847132
#Pseudo R-Squared
nagelkerke(DSBlog1)
## $Models
##                                                                         
## Model: "glm, PsychAggress ~ DigitSpanBck + WRATtotal, binomial, Allvars"
## Null:  "glm, PsychAggress ~ 1, binomial, Allvars"                       
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                           0.00497139
## Cox and Snell (ML)                 0.00391206
## Nagelkerke (Cragg and Uhler)       0.00717210
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -2     -1.2563 2.5125 0.28471
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Model 3

DSBlog3 <- glm(PsychAggress ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")

summary(DSBlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (DigitSpanBck + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3576   0.3941   0.4862   0.5675   0.9101  
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                       1.86140    1.04549   1.780   0.0750 .
## DigitSpanBck                      0.09323    0.11541   0.808   0.4192  
## SexMen                           -0.62912    0.78860  -0.798   0.4250  
## PovStatBelow                      1.65113    1.19085   1.387   0.1656  
## Age                              -0.02285    0.01323  -1.728   0.0841 .
## WRATtotal                         0.01775    0.01714   1.036   0.3003  
## DigitSpanBck:SexMen               0.01376    0.13382   0.103   0.9181  
## DigitSpanBck:PovStatBelow        -0.27451    0.19329  -1.420   0.1555  
## SexMen:PovStatBelow               0.18041    1.54837   0.117   0.9072  
## DigitSpanBck:SexMen:PovStatBelow  0.03102    0.24940   0.124   0.9010  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 489.29  on 631  degrees of freedom
## AIC: 509.29
## 
## Number of Fisher Scoring iterations: 5
exp(cbind(OR = coef(DSBlog3), confint(DSBlog3)))
##                                         OR      2.5 %    97.5 %
## (Intercept)                      6.4327376 0.85524267 52.076797
## DigitSpanBck                     1.0977113 0.88332354  1.389694
## SexMen                           0.5330596 0.11227394  2.487986
## PovStatBelow                     5.2128734 0.53055769 58.665242
## Age                              0.9774056 0.95217978  1.002976
## WRATtotal                        1.0179052 0.98383788  1.052385
## DigitSpanBck:SexMen              1.0138573 0.77627240  1.314001
## DigitSpanBck:PovStatBelow        0.7599464 0.51955503  1.116229
## SexMen:PovStatBelow              1.1977140 0.05586013 24.916160
## DigitSpanBck:SexMen:PovStatBelow 1.0315050 0.63172517  1.688070
########Compare to null model 
#Difference in Deviance
with(DSBlog3,null.deviance - deviance)
## [1] 16.11477
#Degrees of freedom for the difference between two models
with(DSBlog3,df.null - df.residual)
## [1] 9
#p-value
with(DSBlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.06452314
#Pseudo R-Squared
nagelkerke(DSBlog3)
## $Models
##                                                                                                   
## Model: "glm, PsychAggress ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal, binomial, Allvars"
## Null:  "glm, PsychAggress ~ 1, binomial, Allvars"                                                 
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0318851
## Cox and Snell (ML)                  0.0248267
## Nagelkerke (Cragg and Uhler)        0.0455156
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq  p.value
##       -9     -8.0574 16.115 0.064523
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Compare Models 1 & 3

anova(DSBlog1,DSBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ DigitSpanBck + WRATtotal
## Model 2: PsychAggress ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       638     502.89                       
## 2       631     489.29  7   13.602  0.05873 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Digit Span Backward - Physical Assault

Model 1

DSBlog1 <- glm(PhysAssault ~ DigitSpanBck + WRATtotal, data=Allvars,family = "binomial")


summary(DSBlog1)
## 
## Call:
## glm(formula = PhysAssault ~ DigitSpanBck + WRATtotal, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6479  -0.5320  -0.5020  -0.4776   2.2345  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.480502   0.722952  -3.431 0.000601 ***
## DigitSpanBck  0.064338   0.059616   1.079 0.280490    
## WRATtotal     0.003327   0.018664   0.178 0.858527    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 480.70  on 638  degrees of freedom
## AIC: 486.7
## 
## Number of Fisher Scoring iterations: 4
exp(cbind(OR = coef(DSBlog1), confint(DSBlog1)))
##                      OR      2.5 %    97.5 %
## (Intercept)  0.08370116 0.01899563 0.3256606
## DigitSpanBck 1.06645295 0.94728347 1.1973200
## WRATtotal    1.00333240 0.96802001 1.0416671
########Compare to null model 
#Difference in Deviance
with(DSBlog1,null.deviance - deviance)
## [1] 1.829701
#Degrees of freedom for the difference between two models
with(DSBlog1,df.null - df.residual)
## [1] 2
#p-value
with(DSBlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.4005766
#Pseudo R-Squared
nagelkerke(DSBlog1)
## $Models
##                                                                        
## Model: "glm, PhysAssault ~ DigitSpanBck + WRATtotal, binomial, Allvars"
## Null:  "glm, PhysAssault ~ 1, binomial, Allvars"                       
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                           0.00379187
## Cox and Snell (ML)                 0.00285038
## Nagelkerke (Cragg and Uhler)       0.00538879
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -2    -0.91485 1.8297 0.40058
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Model 3

DSBlog3 <- glm(PhysAssault ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")

summary(DSBlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (DigitSpanBck + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8330  -0.5503  -0.4685  -0.3884   2.4253  
## 
## Coefficients:
##                                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                      -1.255613   1.120611  -1.120   0.2625  
## DigitSpanBck                      0.044520   0.107315   0.415   0.6782  
## SexMen                           -0.455390   0.908308  -0.501   0.6161  
## PovStatBelow                      0.408942   1.027509   0.398   0.6906  
## Age                              -0.031862   0.013778  -2.313   0.0207 *
## WRATtotal                         0.009189   0.019285   0.476   0.6337  
## DigitSpanBck:SexMen               0.038519   0.133091   0.289   0.7723  
## DigitSpanBck:PovStatBelow         0.008996   0.165178   0.054   0.9566  
## SexMen:PovStatBelow               0.440727   1.437951   0.306   0.7592  
## DigitSpanBck:SexMen:PovStatBelow -0.056578   0.225189  -0.251   0.8016  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 468.32  on 631  degrees of freedom
## AIC: 488.32
## 
## Number of Fisher Scoring iterations: 5
exp(cbind(OR = coef(DSBlog3), confint(DSBlog3)))
##                                         OR      2.5 %     97.5 %
## (Intercept)                      0.2849011 0.03017875  2.4638141
## DigitSpanBck                     1.0455263 0.84108528  1.2839719
## SexMen                           0.6342003 0.10483198  3.7433863
## PovStatBelow                     1.5052248 0.19592363 11.2177285
## Age                              0.9686402 0.94241171  0.9948367
## WRATtotal                        1.0092314 0.97257573  1.0491430
## DigitSpanBck:SexMen              1.0392708 0.80147234  1.3534598
## DigitSpanBck:PovStatBelow        1.0090362 0.72802901  1.3967021
## SexMen:PovStatBelow              1.5538360 0.09235157 26.3418136
## DigitSpanBck:SexMen:PovStatBelow 0.9449929 0.60540337  1.4687422
########Compare to null model 
#Difference in Deviance
with(DSBlog3,null.deviance - deviance)
## [1] 14.20855
#Degrees of freedom for the difference between two models
with(DSBlog3,df.null - df.residual)
## [1] 9
#p-value
with(DSBlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.1150977
#Pseudo R-Squared
nagelkerke(DSBlog3)
## $Models
##                                                                                                  
## Model: "glm, PhysAssault ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal, binomial, Allvars"
## Null:  "glm, PhysAssault ~ 1, binomial, Allvars"                                                 
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0294458
## Cox and Snell (ML)                  0.0219224
## Nagelkerke (Cragg and Uhler)        0.0414454
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -9     -7.1043 14.209  0.1151
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Compare Models 1 & 3

anova(DSBlog1,DSBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ DigitSpanBck + WRATtotal
## Model 2: PhysAssault ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       638     480.70                       
## 2       631     468.32  7   12.379  0.08877 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1