Dissertation Analyses

load(file="/Users/meganwilliams/Desktop/Dissertation/StroopMixed.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/Allvars.rdata")
library(effects)
library(interactions)
library(rcompanion)
library(car)

Trail Making Test Part A - Psychological Aggression

Model 1

options(scipen = 999)
TMTAlog1 <- glm(PsychAggress ~ TrailsA + WRATtotal, data=Allvars,family = "binomial")
summary(TMTAlog1)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsA + WRATtotal, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1303   0.4823   0.5085   0.5449   1.0981  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  1.335665   0.655826   2.037   0.0417 *
## TrailsA     -0.006319   0.002737  -2.309   0.0209 *
## WRATtotal    0.017840   0.014644   1.218   0.2231  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 498.57  on 638  degrees of freedom
## AIC: 504.57
## 
## Number of Fisher Scoring iterations: 4
round(exp(cbind(OR = coef(TMTAlog1), confint(TMTAlog1,level = 0.95))),digits=3)
##                OR 2.5 % 97.5 %
## (Intercept) 3.803 1.084 14.311
## TrailsA     0.994 0.988  0.999
## WRATtotal   1.018 0.989  1.047
plot(predictorEffect("TrailsA",TMTAlog1))

########Compare to null model 
#Difference in Deviance
with(TMTAlog1,null.deviance - deviance)
## [1] 6.831695
#Degrees of freedom for the difference between two models
with(TMTAlog1,df.null - df.residual)
## [1] 2
#p-value
with(TMTAlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.03284855
#Pseudo R-Squared
nagelkerke(TMTAlog1)
## $Models
##                                                                    
## Model: "glm, PsychAggress ~ TrailsA + WRATtotal, binomial, Allvars"
## Null:  "glm, PsychAggress ~ 1, binomial, Allvars"                  
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0135174
## Cox and Snell (ML)                  0.0106013
## Nagelkerke (Cragg and Uhler)        0.0194357
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq  p.value
##       -2     -3.4158 6.8317 0.032849
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Model 3

options(scipen = 999)
TMTAlog3 <- glm(PsychAggress ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(TMTAlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (TrailsA + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3050   0.4145   0.4876   0.5662   0.9371  
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                  2.3232837  0.9521720   2.440   0.0147 *
## TrailsA                     -0.0046246  0.0044733  -1.034   0.3012  
## SexMen                      -0.5352512  0.3757272  -1.425   0.1543  
## PovStatBelow                -0.3211181  0.9165205  -0.350   0.7261  
## Age                         -0.0211628  0.0133563  -1.584   0.1131  
## WRATtotal                    0.0213502  0.0147965   1.443   0.1490  
## TrailsA:SexMen               0.0002853  0.0061339   0.047   0.9629  
## TrailsA:PovStatBelow         0.0121948  0.0262325   0.465   0.6420  
## SexMen:PovStatBelow          1.1973680  1.0734939   1.115   0.2647  
## TrailsA:SexMen:PovStatBelow -0.0212556  0.0279137  -0.761   0.4464  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 489.18  on 631  degrees of freedom
## AIC: 509.18
## 
## Number of Fisher Scoring iterations: 5
round(exp(cbind(OR = coef(TMTAlog3), confint(TMTAlog3,level = 0.95))),digits=3)
##                                 OR 2.5 % 97.5 %
## (Intercept)                 10.209 1.618 68.160
## TrailsA                      0.995 0.987  1.006
## SexMen                       0.586 0.277  1.222
## PovStatBelow                 0.725 0.104  3.906
## Age                          0.979 0.954  1.005
## WRATtotal                    1.022 0.992  1.051
## TrailsA:SexMen               1.000 0.988  1.013
## TrailsA:PovStatBelow         1.012 0.970  1.077
## SexMen:PovStatBelow          3.311 0.451 31.397
## TrailsA:SexMen:PovStatBelow  0.979 0.918  1.026
########Compare to null model 
#Difference in Deviance
with(TMTAlog3,null.deviance - deviance)
## [1] 16.21973
#Degrees of freedom for the difference between two models
with(TMTAlog3,df.null - df.residual)
## [1] 9
#p-value
with(TMTAlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.06243246
#Pseudo R-Squared
nagelkerke(TMTAlog3)
## $Models
##                                                                                              
## Model: "glm, PsychAggress ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal, binomial, Allvars"
## Null:  "glm, PsychAggress ~ 1, binomial, Allvars"                                            
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0320928
## Cox and Snell (ML)                  0.0249863
## Nagelkerke (Cragg and Uhler)        0.0458083
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff Chisq  p.value
##       -9     -8.1099 16.22 0.062432
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Compare Models 1 & 3

anova(TMTAlog1,TMTAlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ TrailsA + WRATtotal
## Model 2: PsychAggress ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       638     498.57                     
## 2       631     489.18  7    9.388    0.226

Trail Making Test Part A - Physical Assault

Model 1

options(scipen = 999)
TMTAlog1 <- glm(PhysAssault ~ TrailsA + WRATtotal, data=Allvars,family = "binomial")
summary(TMTAlog1)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsA + WRATtotal, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.5836  -0.5414  -0.5166  -0.4765   2.2735  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -1.982492   0.861673  -2.301   0.0214 *
## TrailsA     -0.009439   0.008155  -1.157   0.2471  
## WRATtotal    0.007887   0.017005   0.464   0.6428  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 479.65  on 638  degrees of freedom
## AIC: 485.65
## 
## Number of Fisher Scoring iterations: 6
round(exp(cbind(OR = coef(TMTAlog1), confint(TMTAlog1,level = 0.95))),digits=3)
##                OR 2.5 % 97.5 %
## (Intercept) 0.138 0.026  0.764
## TrailsA     0.991 0.972  1.002
## WRATtotal   1.008 0.975  1.043
########Compare to null model 
#Difference in Deviance
with(TMTAlog1,null.deviance - deviance)
## [1] 2.881826
#Degrees of freedom for the difference between two models
with(TMTAlog1,df.null - df.residual)
## [1] 2
#p-value
with(TMTAlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.2367116
#Pseudo R-Squared
nagelkerke(TMTAlog1)
## $Models
##                                                                   
## Model: "glm, PhysAssault ~ TrailsA + WRATtotal, binomial, Allvars"
## Null:  "glm, PhysAssault ~ 1, binomial, Allvars"                  
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                           0.00597229
## Cox and Snell (ML)                 0.00448574
## Nagelkerke (Cragg and Uhler)       0.00848053
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -2     -1.4409 2.8818 0.23671
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Model 3

options(scipen = 999)
TMTAlog3 <- glm(PhysAssault ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(TMTAlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (TrailsA + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.9896  -0.5444  -0.4687  -0.3914   2.4456  
## 
## Coefficients:
##                                Estimate  Std. Error z value Pr(>|z|)  
## (Intercept)                 -1.36348112  1.05751855  -1.289   0.1973  
## TrailsA                      0.00007282  0.00727697   0.010   0.9920  
## SexMen                       0.07629996  0.57331921   0.133   0.8941  
## PovStatBelow                 1.66166783  0.89445973   1.858   0.0632 .
## Age                         -0.02951309  0.01411907  -2.090   0.0366 *
## WRATtotal                    0.01521473  0.01744790   0.872   0.3832  
## TrailsA:SexMen              -0.00802885  0.01525606  -0.526   0.5987  
## TrailsA:PovStatBelow        -0.04104160  0.02947504  -1.392   0.1638  
## SexMen:PovStatBelow         -1.19151471  1.15924755  -1.028   0.3040  
## TrailsA:SexMen:PovStatBelow  0.04371608  0.03509486   1.246   0.2129  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 466.00  on 631  degrees of freedom
## AIC: 486
## 
## Number of Fisher Scoring iterations: 6
round(exp(cbind(OR = coef(TMTAlog3), confint(TMTAlog3,level = 0.95))),digits=3)
## Waiting for profiling to be done...
##                                OR 2.5 % 97.5 %
## (Intercept)                 0.256 0.031  2.011
## TrailsA                     1.000 0.978  1.011
## SexMen                      1.079 0.378  4.055
## PovStatBelow                5.268 1.006 33.547
## Age                         0.971 0.944  0.998
## WRATtotal                   1.015 0.982  1.052
## TrailsA:SexMen              0.992 0.953  1.020
## TrailsA:PovStatBelow        0.960 0.900  1.010
## SexMen:PovStatBelow         0.304 0.029  3.170
## TrailsA:SexMen:PovStatBelow 1.045 0.975  1.127
########Compare to null model 
#Difference in Deviance
with(TMTAlog3,null.deviance - deviance)
## [1] 16.52871
#Degrees of freedom for the difference between two models
with(TMTAlog3,df.null - df.residual)
## [1] 9
#p-value
with(TMTAlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.05662862
#Pseudo R-Squared
nagelkerke(TMTAlog3)
## $Models
##                                                                                             
## Model: "glm, PhysAssault ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal, binomial, Allvars"
## Null:  "glm, PhysAssault ~ 1, binomial, Allvars"                                            
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0342541
## Cox and Snell (ML)                  0.0254562
## Nagelkerke (Cragg and Uhler)        0.0481263
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq  p.value
##       -9     -8.2644 16.529 0.056629
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Compare Models 1 & 3

anova(TMTAlog1,TMTAlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ TrailsA + WRATtotal
## Model 2: PhysAssault ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       638     479.65                       
## 2       631     466.00  7   13.647  0.05783 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1