etf4.df <- read.csv('myetf4.csv')
str(etf4.df)
## 'data.frame':    751 obs. of  5 variables:
##  $ Index  : chr  "2015-12-14" "2015-12-15" "2015-12-16" "2015-12-17" ...
##  $ X0050  : num  53.3 53.3 54.1 54.8 54.5 ...
##  $ X0056  : num  18.2 18.4 18.6 18.8 18.9 ...
##  $ X006205: num  31.1 31.6 31.6 32.2 32.2 ...
##  $ X00646 : num  19.6 19.6 19.9 20.1 19.9 ...
etf4 <- read_csv('myetf4.csv')
## 
## ── Column specification ────────────────────────────────────────────────────────────────────────────────────────
## cols(
##   Index = col_date(format = ""),
##   `0050` = col_double(),
##   `0056` = col_double(),
##   `006205` = col_double(),
##   `00646` = col_double()
## )
str(etf4)
## tibble [751 × 5] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ Index : Date[1:751], format: "2015-12-14" "2015-12-15" ...
##  $ 0050  : num [1:751] 53.3 53.3 54.1 54.8 54.5 ...
##  $ 0056  : num [1:751] 18.2 18.4 18.6 18.8 18.9 ...
##  $ 006205: num [1:751] 31.1 31.6 31.6 32.2 32.2 ...
##  $ 00646 : num [1:751] 19.6 19.6 19.9 20.1 19.9 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   Index = col_date(format = ""),
##   ..   `0050` = col_double(),
##   ..   `0056` = col_double(),
##   ..   `006205` = col_double(),
##   ..   `00646` = col_double()
##   .. )
head(etf4)
## # A tibble: 6 x 5
##   Index      `0050` `0056` `006205` `00646`
##   <date>      <dbl>  <dbl>    <dbl>   <dbl>
## 1 2015-12-14   53.3   18.2     31.1    19.6
## 2 2015-12-15   53.3   18.4     31.6    19.6
## 3 2015-12-16   54.1   18.6     31.6    19.9
## 4 2015-12-17   54.8   18.8     32.2    20.0
## 5 2015-12-18   54.5   19.0     32.2    19.8
## 6 2015-12-21   54.4   19.0     33      19.6

convert data into time series

etf4.xts <- xts(etf4[, -1], order.by = etf4$Index)
head(etf4.xts)
##             0050  0056 006205 00646
## 2015-12-14 53.29 18.25  31.06 19.61
## 2015-12-15 53.33 18.38  31.59 19.63
## 2015-12-16 54.14 18.56  31.60 19.89
## 2015-12-17 54.77 18.81  32.23 20.05
## 2015-12-18 54.50 18.95  32.18 19.85
## 2015-12-21 54.41 19.02  33.00 19.64

etf4.ret <- etf4.xts %>% Return.calculate() %>% na.omit()
head(etf4.ret)
##                     0050         0056        006205        00646
## 2015-12-15  0.0007506099  0.007123288  0.0170637476  0.001019888
## 2015-12-16  0.0151884493  0.009793254  0.0003165559  0.013245033
## 2015-12-17  0.0116364980  0.013469828  0.0199367089  0.008044243
## 2015-12-18 -0.0049297060  0.007442850 -0.0015513497 -0.009975062
## 2015-12-21 -0.0016513761  0.003693931  0.0254816656 -0.010579345
## 2015-12-22  0.0023892667 -0.003680336  0.0030303030  0.004073320

#compute average returns and covariance matrix

Mean.arithmetic(etf4.ret)
##                         0050         0056        006205        00646
## Arithmetic Mean 0.0004632227 0.0003846366 -0.0002118311 0.0002554122
cov(etf4.ret)
##                0050         0056       006205        00646
## 0050   7.837060e-05 4.559164e-05 4.467258e-05 3.663388e-05
## 0056   4.559164e-05 4.526413e-05 2.673674e-05 2.353543e-05
## 006205 4.467258e-05 2.673674e-05 1.304184e-04 2.910367e-05
## 00646  3.663388e-05 2.353543e-05 2.910367e-05 5.902892e-05

#Q1 (Daily)compute optimal weights for 4 ETFs based on daily returns of the period

ETF.names <- c("0050", "0056", "006205", "00646")
mu.vec = c(0.0004632227, 0.0003846366, -0.0002118311, 0.0002554122)
names(mu.vec) = ETF.names
sigma.mat = matrix(c(7.837060e-05, 4.559164e-05, 4.467258e-05, 3.663388e-05, 
                     4.559164e-05, 4.526413e-05, 2.673674e-05, 2.353543e-05, 
                     4.467258e-05, 2.673674e-05, 1.304184e-04, 2.910367e-05, 
                     3.663388e-05, 2.353543e-05, 2.910367e-05, 5.902892e-05) ,
                   nrow=4, ncol=4)
dimnames(sigma.mat) = list(ETF.names, ETF.names)
mu.vec
##          0050          0056        006205         00646 
##  0.0004632227  0.0003846366 -0.0002118311  0.0002554122
sigma.mat
##                0050         0056       006205        00646
## 0050   7.837060e-05 4.559164e-05 4.467258e-05 3.663388e-05
## 0056   4.559164e-05 4.526413e-05 2.673674e-05 2.353543e-05
## 006205 4.467258e-05 2.673674e-05 1.304184e-04 2.910367e-05
## 00646  3.663388e-05 2.353543e-05 2.910367e-05 5.902892e-05
x.vec = rep(1,4)/4
names(x.vec) = ETF.names
mu.p.x = crossprod (x.vec,mu.vec) 
sig2.p.x = t(x.vec) %*% sigma.mat %*%x.vec
sig.p.x = sqrt ( sig2.p.x)
mu.p.x
##              [,1]
## [1,] 0.0002228601
sig.p.x
##            [,1]
## [1,] 0.00673438

Compute minimum variance portfolio (Daily)

top.mat = cbind(2*sigma.mat, rep(1, 4))
bot.vec = c(rep(1, 4), 0)
Am.mat = rbind(top.mat, bot.vec)
b.vec = c(rep(0, 4), 1)
z.m.mat = solve(Am.mat)%*%b.vec
m.vec = z.m.mat [1:4,1]
m.vec
##       0050       0056     006205      00646 
## -0.2193578  0.7283718  0.1076234  0.3833627

#portfolio return and standard deviation

mu.gmin = as.numeric(crossprod(m.vec, mu.vec))
mu.gmin
## [1] 0.0002536644
sig2.gmin = as.numeric(t(m.vec)%*%sigma.mat%*%m.vec)
sig.gmin = sqrt(sig2.gmin)
sig.gmin
## [1] 0.005904942

#another way of computing Minimum Variance Portfolio

one.vec = rep(1,4)
sigma.inv.mat = solve(sigma.mat)
top.mat = sigma.inv.mat%*%one.vec
bot.val = as.numeric ((t(one.vec)%*%sigma.inv.mat%*%one.vec))
m.mat = top.mat/bot.val
m.mat[,1]
##       0050       0056     006205      00646 
## -0.2193578  0.7283718  0.1076234  0.3833627

#Q2 (Monthly)convert into monthly frequency

etf4.mon.ret <- etf4.xts %>% to.monthly(indexAt = 'lastof', OHLC = FALSE) %>% 
  Return.calculate() %>% na.omit
head(etf4.mon.ret)
##                   0050         0056       006205        00646
## 2016-01-31 -0.01981651 -0.013785790 -0.173070915 -0.038883350
## 2016-02-29  0.02864096  0.043548387 -0.027578391 -0.003630705
## 2016-03-31  0.05550500 -0.002575992  0.082750583  0.026028110
## 2016-04-30 -0.04724138 -0.037190083 -0.024757804  0.009639777
## 2016-05-31  0.02515382  0.016630901  0.004415011  0.022110553
## 2016-06-30  0.03636364  0.029551451 -0.025641026 -0.026057030

#compute average returns and covariance matrix

Mean.arithmetic(etf4.mon.ret)
##                        0050        0056       006205      00646
## Arithmetic Mean 0.008819836 0.007086721 -0.005355481 0.00451063
cov(etf4.mon.ret)
##                0050         0056       006205        00646
## 0050   0.0011751458 0.0008661004 0.0008472189 0.0003928466
## 0056   0.0008661004 0.0009080806 0.0005553289 0.0003572509
## 006205 0.0008472189 0.0005553289 0.0024412877 0.0006736296
## 00646  0.0003928466 0.0003572509 0.0006736296 0.0008605161

#compute optimal weights for 4 ETFs based on monthly returns of the period

ETF.names <- c("0050", "0056", "006205", "00646")
mu.vec = c(0.008819836, 0.007086721, -0.005355481, 0.00451063)
names(mu.vec) = ETF.names
sigma.mat = matrix(c(0.0011751458, 0.0008661004, 0.0008472189, 0.0003928466, 
                     0.0008661004, 0.0009080806, 0.0005553289, 0.0003572509, 
                     0.0008472189, 0.0005553289, 0.0024412877, 0.0006736296, 
                     0.0003928466, 0.0003572509, 0.0006736296, 0.0008605161) ,
                   nrow=4, ncol=4)
dimnames(sigma.mat) = list(ETF.names, ETF.names)
mu.vec
##         0050         0056       006205        00646 
##  0.008819836  0.007086721 -0.005355481  0.004510630
sigma.mat
##                0050         0056       006205        00646
## 0050   0.0011751458 0.0008661004 0.0008472189 0.0003928466
## 0056   0.0008661004 0.0009080806 0.0005553289 0.0003572509
## 006205 0.0008472189 0.0005553289 0.0024412877 0.0006736296
## 00646  0.0003928466 0.0003572509 0.0006736296 0.0008605161
x.vec = rep(1,4)/4
names(x.vec) = ETF.names
mu.p.x = crossprod (x.vec,mu.vec) 
sig2.p.x = t(x.vec) %*% sigma.mat %*%x.vec
sig.p.x = sqrt ( sig2.p.x)
mu.p.x
##             [,1]
## [1,] 0.003765426
sig.p.x
##            [,1]
## [1,] 0.02825086

Compute minimum variance portfolio (monthly)

top.mat = cbind(2*sigma.mat, rep(1, 4))
bot.vec = c(rep(1, 4), 0)
Am.mat = rbind(top.mat, bot.vec)
b.vec = c(rep(0, 4), 1)
z.m.mat = solve(Am.mat)%*%b.vec
m.vec = z.m.mat [1:4,1]
m.vec
##        0050        0056      006205       00646 
## 0.003183681 0.474049222 0.001203766 0.521563330

#portfolio return and standard deviation

mu.gmin = as.numeric(crossprod(m.vec, mu.vec))
mu.gmin
## [1] 0.005733667
sig2.gmin = as.numeric(t(m.vec)%*%sigma.mat%*%m.vec)
sig.gmin = sqrt(sig2.gmin)
sig.gmin
## [1] 0.02490441

#another way of computing Minimum Variance Portfolio

one.vec = rep(1,4)
sigma.inv.mat = solve(sigma.mat)
top.mat = sigma.inv.mat%*%one.vec
bot.val = as.numeric ((t(one.vec)%*%sigma.inv.mat%*%one.vec))
m.mat = top.mat/bot.val
m.mat[,1]
##        0050        0056      006205       00646 
## 0.003183681 0.474049222 0.001203766 0.521563330