This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Cmd+Shift+Enter.

library(tidyverse)
library(readr)
library(esquisse)
library(stringr)

Sheet <- read_csv("mmc1-2.csv")
Missing column names filled in: 'X20' [20], 'X21' [21]
── Column specification ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
cols(
  .default = col_character(),
  `Days between blood draws` = col_double(),
  `Age (y)` = col_double(),
  `Classical monocytes` = col_double(),
  `Non-classical monocytes` = col_double(),
  `NK cells` = col_double(),
  `Naïve B cells` = col_double(),
  X20 = col_logical(),
  X21 = col_logical()
)
ℹ Use `spec()` for the full column specifications.
Sheet

Data <- select(Sheet, "Donor ID", "Sex", ends_with("monocytes"), ends_with("cells"))
Data

DataF <- filter(Data, Sex == "F")
DataF
DataFf<- as.data.frame(apply(DataF, 2, as.numeric))
NAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercion
DataFf
DataM <- filter (Data, Sex == "M")
DataM
DataMm<- as.data.frame(apply(DataM, 2, as.numeric))
NAs introduced by coercionNAs introduced by coercion
DataMm

AverageF <- colMeans(DataFf, na.rm = TRUE, dims = 1)
AverageF
               Donor ID                     Sex     Classical monocytes Non-classical monocytes                NK cells           Naïve B cells     Naïve CD4+\nT cells 
             55.6756757                     NaN              17.1886364               1.3727273               6.3113636               5.4568182              12.1928571 
    Naïve CD8+\nT cells       Naïve\nTREG cells      Memory\nTREG cells               TH1 cells            TH1/17 cells              TH17 cells               TH2 cells 
              5.8928571               0.3928571               1.2357143               1.7047619               2.6119048               3.5023810               1.7142857 
              TFH cells 
              3.0095238 
MeanF <- rbind(AverageF, DataFf, deparse.level = 1)
MeanF
MeanFf <- read_csv("Research - Sheet2.csv")

── Column specification ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
cols(
  `Cell Type` = col_character(),
  `Gene Expression` = col_double()
)
MeanFf
ggplot(MeanFf) +
 aes(x = `Cell Type`, weight = `Gene Expression`) +
 geom_bar(fill = "#6d9eeb") +
 coord_flip() +
 theme_minimal() +
 ylim(0L, 20L)



AverageM <- colMeans(DataMm, na.rm = FALSE, dims = 1)
AverageM
               Donor ID                     Sex     Classical monocytes Non-classical monocytes                NK cells           Naïve B cells     Naïve CD4+\nT cells 
                     NA                      NA              18.2903226               1.6387097               8.1564516               5.1322581              10.3193548 
    Naïve CD8+\nT cells       Naïve\nTREG cells      Memory\nTREG cells               TH1 cells            TH1/17 cells              TH17 cells               TH2 cells 
              6.4274194               0.4935484               1.2129032               1.3306452               1.7612903               2.9354839               1.8451613 
              TFH cells 
              2.5500000 
MeanM <- rbind(AverageM, DataMm, deparse.level = 1)
MeanM
MeanMm <- read_csv("Research - Sheet3.csv")

── Column specification ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
cols(
  `Cell Type` = col_character(),
  `Gene Expression` = col_double()
)
MeanMm
ggplot(MeanMm) +
 aes(x = `Cell Type`, weight = `Gene Expression`) +
 geom_bar(fill = "#bbc9d3") +
 coord_flip() +
 theme_minimal() +
 ylim(0L, 20L)


Sum <- AverageF - AverageM
AbsSum <- abs(Sum)
Total <- rbind(AbsSum, Data, deparse.level = 1)
Total

TotalA <- read_csv("Research - Sheet1.csv")

── Column specification ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
cols(
  `Cell Type` = col_character(),
  `Gene Expression` = col_double()
)
TotalA

ggplot(TotalA) +
 aes(x = `Cell Type`, weight = `Gene Expression`) +
 geom_bar(fill = "#00e1c6") +
 coord_flip() +
 theme_minimal() +
 ylim(0L, 2L)

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Cmd+Option+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Cmd+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKVGhpcyBpcyBhbiBbUiBNYXJrZG93bl0oaHR0cDovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbSkgTm90ZWJvb2suIFdoZW4geW91IGV4ZWN1dGUgY29kZSB3aXRoaW4gdGhlIG5vdGVib29rLCB0aGUgcmVzdWx0cyBhcHBlYXIgYmVuZWF0aCB0aGUgY29kZS4gCgpUcnkgZXhlY3V0aW5nIHRoaXMgY2h1bmsgYnkgY2xpY2tpbmcgdGhlICpSdW4qIGJ1dHRvbiB3aXRoaW4gdGhlIGNodW5rIG9yIGJ5IHBsYWNpbmcgeW91ciBjdXJzb3IgaW5zaWRlIGl0IGFuZCBwcmVzc2luZyAqQ21kK1NoaWZ0K0VudGVyKi4gCgpgYGB7cn0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkocmVhZHIpCmxpYnJhcnkoZXNxdWlzc2UpCmxpYnJhcnkoc3RyaW5ncikKClNoZWV0IDwtIHJlYWRfY3N2KCJtbWMxLTIuY3N2IikKU2hlZXQKCkRhdGEgPC0gc2VsZWN0KFNoZWV0LCAiRG9ub3IgSUQiLCAiU2V4IiwgZW5kc193aXRoKCJtb25vY3l0ZXMiKSwgZW5kc193aXRoKCJjZWxscyIpKQpEYXRhCgpEYXRhRiA8LSBmaWx0ZXIoRGF0YSwgU2V4ID09ICJGIikKRGF0YUYKRGF0YUZmPC0gYXMuZGF0YS5mcmFtZShhcHBseShEYXRhRiwgMiwgYXMubnVtZXJpYykpCkRhdGFGZgpEYXRhTSA8LSBmaWx0ZXIgKERhdGEsIFNleCA9PSAiTSIpCkRhdGFNCkRhdGFNbTwtIGFzLmRhdGEuZnJhbWUoYXBwbHkoRGF0YU0sIDIsIGFzLm51bWVyaWMpKQpEYXRhTW0KCkF2ZXJhZ2VGIDwtIGNvbE1lYW5zKERhdGFGZiwgbmEucm0gPSBUUlVFLCBkaW1zID0gMSkKQXZlcmFnZUYKTWVhbkYgPC0gcmJpbmQoQXZlcmFnZUYsIERhdGFGZiwgZGVwYXJzZS5sZXZlbCA9IDEpCk1lYW5GCk1lYW5GZiA8LSByZWFkX2NzdigiUmVzZWFyY2ggLSBTaGVldDIuY3N2IikKTWVhbkZmCmdncGxvdChNZWFuRmYpICsKIGFlcyh4ID0gYENlbGwgVHlwZWAsIHdlaWdodCA9IGBHZW5lIEV4cHJlc3Npb25gKSArCiBnZW9tX2JhcihmaWxsID0gIiM2ZDllZWIiKSArCiBjb29yZF9mbGlwKCkgKwogdGhlbWVfbWluaW1hbCgpICsKIHlsaW0oMEwsIDIwTCkKCgpBdmVyYWdlTSA8LSBjb2xNZWFucyhEYXRhTW0sIG5hLnJtID0gRkFMU0UsIGRpbXMgPSAxKQpBdmVyYWdlTQpNZWFuTSA8LSByYmluZChBdmVyYWdlTSwgRGF0YU1tLCBkZXBhcnNlLmxldmVsID0gMSkKTWVhbk0KTWVhbk1tIDwtIHJlYWRfY3N2KCJSZXNlYXJjaCAtIFNoZWV0My5jc3YiKQpNZWFuTW0KZ2dwbG90KE1lYW5NbSkgKwogYWVzKHggPSBgQ2VsbCBUeXBlYCwgd2VpZ2h0ID0gYEdlbmUgRXhwcmVzc2lvbmApICsKIGdlb21fYmFyKGZpbGwgPSAiI2JiYzlkMyIpICsKIGNvb3JkX2ZsaXAoKSArCiB0aGVtZV9taW5pbWFsKCkgKwogeWxpbSgwTCwgMjBMKQoKU3VtIDwtIEF2ZXJhZ2VGIC0gQXZlcmFnZU0KQWJzU3VtIDwtIGFicyhTdW0pClRvdGFsIDwtIHJiaW5kKEFic1N1bSwgRGF0YSwgZGVwYXJzZS5sZXZlbCA9IDEpClRvdGFsCgpUb3RhbEEgPC0gcmVhZF9jc3YoIlJlc2VhcmNoIC0gU2hlZXQxLmNzdiIpClRvdGFsQQoKZ2dwbG90KFRvdGFsQSkgKwogYWVzKHggPSBgQ2VsbCBUeXBlYCwgd2VpZ2h0ID0gYEdlbmUgRXhwcmVzc2lvbmApICsKIGdlb21fYmFyKGZpbGwgPSAiIzAwZTFjNiIpICsKIGNvb3JkX2ZsaXAoKSArCiB0aGVtZV9taW5pbWFsKCkgKwogeWxpbSgwTCwgMkwpCgpgYGAKCkFkZCBhIG5ldyBjaHVuayBieSBjbGlja2luZyB0aGUgKkluc2VydCBDaHVuayogYnV0dG9uIG9uIHRoZSB0b29sYmFyIG9yIGJ5IHByZXNzaW5nICpDbWQrT3B0aW9uK0kqLgoKV2hlbiB5b3Ugc2F2ZSB0aGUgbm90ZWJvb2ssIGFuIEhUTUwgZmlsZSBjb250YWluaW5nIHRoZSBjb2RlIGFuZCBvdXRwdXQgd2lsbCBiZSBzYXZlZCBhbG9uZ3NpZGUgaXQgKGNsaWNrIHRoZSAqUHJldmlldyogYnV0dG9uIG9yIHByZXNzICpDbWQrU2hpZnQrSyogdG8gcHJldmlldyB0aGUgSFRNTCBmaWxlKS4gCgpUaGUgcHJldmlldyBzaG93cyB5b3UgYSByZW5kZXJlZCBIVE1MIGNvcHkgb2YgdGhlIGNvbnRlbnRzIG9mIHRoZSBlZGl0b3IuIENvbnNlcXVlbnRseSwgdW5saWtlICpLbml0KiwgKlByZXZpZXcqIGRvZXMgbm90IHJ1biBhbnkgUiBjb2RlIGNodW5rcy4gSW5zdGVhZCwgdGhlIG91dHB1dCBvZiB0aGUgY2h1bmsgd2hlbiBpdCB3YXMgbGFzdCBydW4gaW4gdGhlIGVkaXRvciBpcyBkaXNwbGF5ZWQuCgo=