This data is published as supplementary material for a peer reviewed paper: https://osf.io/aku2j/

The object of the study to examine the effect of percieved passion of entrepreneurs/pitch/delivery on accepted pitches on funding show called “Dragon’s Den”

The data is randomly selected. 177 samples from a much larger dataset of 864 pitches. Random number selection + curation (not taken seriously)

Each row of data represents a pitch.

We have info on whether the pitch was accepted.

We have info on composition of team

We have some “rating” of passion, and other percieved emotional variables, these are generated by aggregated, independent raters drawn from a pool of 891 participants recruited from Amazon MTurk.

#working directory
setwd("~/Documents/OneDrive - McGill University/R/Classes/MGMT710")

#Packages
library(ggplot2) # plots
library(dplyr) # data manipulation
library(knitr) # to render the HTML renders

#Load datasets
data1<-as_tibble(read.csv("GravitationalPull_Study1and3a.csv",header=T)) #data includes column labels

#exploring the data

#how much data
dim(data1)
## [1] 177  33

This shows that we have 177 rows (observations) and 33 columns (variables)

#what columns do we have
labels(data1)[[2]]
##  [1] "ReceivedOffer"        "SpeakersPassion"      "MainFemale"          
##  [4] "X..Speakers"          "Industry"             "Ethnicity"           
##  [7] "Season"               "SociallyResponsible"  "X..Females"          
## [10] "FF05"                 "Engineering"          "Ethnicity_bin"       
## [13] "Industry_bin"         "FF05_Bin"             "SpeakersPassion.z"   
## [16] "SpeakersPassion.low"  "SpeakersPassion.high" "X..Speakers.z"       
## [19] "X..Speakers.low"      "X..Speakers.high"     "SinglePresenter"     
## [22] "Appropriateness"      "Extraversion_s"       "Authentic_s"         
## [25] "Appropriateness.z"    "Appropriateness.low"  "Appropriateness.high"
## [28] "Extraversion_s.z"     "Extraversion_s.low"   "Extraversion_s.high" 
## [31] "Authentic_s.z"        "Authentic_s.low"      "Authentic_s.high"

RecievedOffer is the DV in the original study: 1=offer

SpeakersPassion is the “treatment”, hyp being more passion == higher likelihood of getting an offer.

We are interested in what happens to this relationship when slice by gender, industry, etc.

Now, some summary statistics

summary(data1) # univariate statistics
##  ReceivedOffer    SpeakersPassion   MainFemale      X..Speakers   
##  Min.   :0.0000   Min.   :0.25    Min.   :0.0000   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:1.26    1st Qu.:0.0000   1st Qu.:1.000  
##  Median :0.0000   Median :1.72    Median :0.0000   Median :1.000  
##  Mean   :0.4068   Mean   :1.70    Mean   :0.3333   Mean   :1.401  
##  3rd Qu.:1.0000   3rd Qu.:2.17    3rd Qu.:1.0000   3rd Qu.:2.000  
##  Max.   :1.0000   Max.   :3.20    Max.   :1.0000   Max.   :3.000  
##                                                                   
##                  Industry     Ethnicity         Season      SociallyResponsible
##  Consumer NonDurables:103   Min.   :1.000   Min.   :1.000   Min.   :0.00000    
##  Other               : 23   1st Qu.:1.000   1st Qu.:4.000   1st Qu.:0.00000    
##  Consumer Durables   : 15   Median :1.000   Median :5.000   Median :0.00000    
##  Shops               : 14   Mean   :1.203   Mean   :5.028   Mean   :0.08475    
##  Hi-Tech             :  9   3rd Qu.:1.000   3rd Qu.:7.000   3rd Qu.:0.00000    
##  Health              :  4   Max.   :6.000   Max.   :8.000   Max.   :1.00000    
##  (Other)             :  9                                                      
##    X..Females          FF05        Engineering     Ethnicity_bin   
##  Min.   :0.0000   Min.   :1.000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:1.000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :1.000   Median :0.0000   Median :0.0000  
##  Mean   :0.4689   Mean   :1.763   Mean   :0.1751   Mean   :0.0904  
##  3rd Qu.:1.0000   3rd Qu.:2.000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :2.0000   Max.   :5.000   Max.   :1.0000   Max.   :1.0000  
##                                                                    
##   Industry_bin       FF05_Bin      SpeakersPassion.z  SpeakersPassion.low
##  Min.   :0.0000   Min.   :0.0000   Min.   :-2.41025   Min.   :-1.4102    
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:-0.73191   1st Qu.: 0.2681    
##  Median :1.0000   Median :1.0000   Median : 0.03248   Median : 1.0325    
##  Mean   :0.5819   Mean   :0.7458   Mean   : 0.00000   Mean   : 1.0000    
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.: 0.78026   3rd Qu.: 1.7803    
##  Max.   :1.0000   Max.   :1.0000   Max.   : 2.49183   Max.   : 3.4918    
##                                                                          
##  SpeakersPassion.high X..Speakers.z     X..Speakers.low  X..Speakers.high
##  Min.   :-3.4102      Min.   :-0.7207   Min.   :0.2793   Min.   :-1.721  
##  1st Qu.:-1.7319      1st Qu.:-0.7207   1st Qu.:0.2793   1st Qu.:-1.721  
##  Median :-0.9675      Median :-0.7207   Median :0.2793   Median :-1.721  
##  Mean   :-1.0000      Mean   : 0.0000   Mean   :1.0000   Mean   :-1.000  
##  3rd Qu.:-0.2197      3rd Qu.: 1.0760   3rd Qu.:2.0760   3rd Qu.: 0.076  
##  Max.   : 1.4918      Max.   : 2.8727   Max.   :3.8727   Max.   : 1.873  
##                                                                          
##  SinglePresenter  Appropriateness Extraversion_s   Authentic_s   
##  Min.   :0.0000   Min.   :2.667   Min.   :2.507   Min.   :3.559  
##  1st Qu.:0.0000   1st Qu.:4.894   1st Qu.:4.698   1st Qu.:4.747  
##  Median :1.0000   Median :5.162   Median :5.180   Median :5.113  
##  Mean   :0.6328   Mean   :5.135   Mean   :5.108   Mean   :5.133  
##  3rd Qu.:1.0000   3rd Qu.:5.561   3rd Qu.:5.555   3rd Qu.:5.473  
##  Max.   :1.0000   Max.   :6.350   Max.   :6.571   Max.   :6.344  
##                   NA's   :1       NA's   :1       NA's   :1      
##  Appropriateness.z   Appropriateness.low Appropriateness.high
##  Min.   :-3.941484   Min.   :-2.9415     Min.   :-4.9415     
##  1st Qu.:-0.388286   1st Qu.: 0.6117     1st Qu.:-1.3883     
##  Median : 0.039600   Median : 1.0396     Median :-0.9604     
##  Mean   :-0.004071   Mean   : 0.9959     Mean   :-1.0041     
##  3rd Qu.: 0.675797   3rd Qu.: 1.6758     3rd Qu.:-0.3242     
##  Max.   : 1.934118   Max.   : 2.9341     Max.   : 0.9341     
##  NA's   :1           NA's   :1           NA's   :1           
##  Extraversion_s.z    Extraversion_s.low Extraversion_s.high Authentic_s.z      
##  Min.   :-3.801684   Min.   :-2.8017    Min.   :-4.8017     Min.   :-2.949600  
##  1st Qu.:-0.604615   1st Qu.: 0.3954    1st Qu.:-1.6046     1st Qu.:-0.725136  
##  Median : 0.098837   Median : 1.0988    Median :-0.9012     Median :-0.038727  
##  Mean   :-0.006527   Mean   : 0.9935    Mean   :-1.0065     Mean   :-0.001947  
##  3rd Qu.: 0.645309   3rd Qu.: 1.6453    3rd Qu.:-0.3547     3rd Qu.: 0.635732  
##  Max.   : 2.127108   Max.   : 3.1271    Max.   : 1.1271     Max.   : 2.266319  
##  NA's   :1           NA's   :1          NA's   :1           NA's   :1          
##  Authentic_s.low   Authentic_s.high 
##  Min.   :-1.9496   Min.   :-3.9496  
##  1st Qu.: 0.2749   1st Qu.:-1.7251  
##  Median : 0.9613   Median :-1.0387  
##  Mean   : 0.9981   Mean   :-1.0019  
##  3rd Qu.: 1.6357   3rd Qu.:-0.3643  
##  Max.   : 3.2663   Max.   : 1.2663  
##  NA's   :1         NA's   :1

40% recieved offers in this data

33% pitches led by women

Mostly white people.

ggplot(data=data1, aes(x=SpeakersPassion)) + #what you want to plot
  geom_density(,fill="lightblue")+ # density plot
  ggtitle("Distribution of SpeakerPassion")

ggplot(data=data1, aes(x=SpeakersPassion)) +
  geom_density(,fill="lightblue")+
  facet_wrap(~Industry)+ #slice the data by...
  ggtitle("Distribution of SpeakerPassion by industry")

ggplot(data=data1, aes(x=SpeakersPassion)) +
  geom_density(,fill="lightblue")+
  facet_wrap(~ReceivedOffer)+
  ggtitle("Distribution of SpeakerPassion by offer")

ggplot(data=data1, aes(x=SpeakersPassion)) +
  geom_density(,fill="lightblue")+
  facet_wrap(~MainFemale)+
  ggtitle("Distribution of SpeakerPassion for female lead pitcher")

ggplot(data=data1, aes(x=Appropriateness)) +
  geom_density(,fill="lightblue")+
  facet_wrap(~MainFemale)+
  ggtitle("Distribution of percieved appropriateness for female lead pitcher")
## Warning: Removed 1 rows containing non-finite values (stat_density).