For more than four decades, the General Social Survey (GSS) has studied the growing complexity of American society. It is the only full-probability, personal-interview survey designed to monitor changes in both social characteristics and attitudes currently being conducted in the United States.
The interesting question is the equality of accessing to education of black people compared to White people in United State. The one of the indicator that can significantly indicate the equality of the race is the accessing to the education. In my opinion, everybody or no matter what’s your nationality, they should be acquired the education equally.
## Rows: 57,061
## Columns: 114
## $ caseid <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,...
## $ year <int> 1972, 1972, 1972, 1972, 1972, 1972, 1972, 1972, 1972, 1972...
## $ age <int> 23, 70, 48, 27, 61, 26, 28, 27, 21, 30, 30, 56, 54, 49, 41...
## $ sex <fct> Female, Male, Female, Female, Female, Male, Male, Male, Fe...
## $ race <fct> White, White, White, White, White, White, White, White, Bl...
## $ hispanic <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ uscitzn <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ educ <int> 16, 10, 12, 17, 12, 14, 13, 16, 12, 12, 13, 6, 9, 8, 9, 14...
## $ paeduc <int> 10, 8, 8, 16, 8, 18, 16, 16, 12, 10, 12, NA, 5, NA, NA, NA...
## $ maeduc <int> NA, 8, 8, 12, 8, 19, 12, 14, 12, 7, NA, 8, 5, 10, 3, 0, 8,...
## $ speduc <int> NA, 12, 11, 20, 12, NA, NA, NA, NA, 11, 12, 9, 8, NA, 8, 1...
## $ degree <fct> Bachelor, Lt High School, High School, Bachelor, High Scho...
## $ vetyears <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ sei <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ wrkstat <fct> Working Fulltime, Retired, Working Parttime, Working Fullt...
## $ wrkslf <fct> Someone Else, Someone Else, Someone Else, Someone Else, So...
## $ marital <fct> Never Married, Married, Married, Married, Married, Never M...
## $ spwrksta <fct> NA, Keeping House, Working Fulltime, Working Fulltime, Tem...
## $ sibs <int> 3, 4, 5, 5, 2, 1, 7, 1, 2, 7, 7, 6, 2, 2, 0, 7, 0, 2, 2, 7...
## $ childs <int> 0, 5, 4, 0, 2, 0, 2, 0, 2, 4, 1, 5, 1, 2, 5, 2, 2, 3, 3, 0...
## $ agekdbrn <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ incom16 <fct> Average, Above Average, Average, Average, Below Average, A...
## $ born <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ parborn <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ granborn <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ income06 <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ coninc <int> 25926, 33333, 33333, 41667, 69444, 60185, 50926, 18519, 37...
## $ region <fct> E. Nor. Central, E. Nor. Central, E. Nor. Central, E. Nor....
## $ partyid <fct> "Ind,Near Dem", "Not Str Democrat", "Independent", "Not St...
## $ polviews <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ relig <fct> Jewish, Catholic, Protestant, Other, Protestant, Protestan...
## $ attend <fct> Once A Year, Every Week, Once A Month, NA, NA, Once A Year...
## $ natspac <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ natenvir <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ natheal <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ natcity <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ natcrime <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ natdrug <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ nateduc <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ natrace <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ natarms <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ nataid <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ natfare <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ natroad <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ natsoc <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ natmass <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ natpark <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ confinan <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ conbus <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ conclerg <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ coneduc <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ confed <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ conlabor <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ conpress <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ conmedic <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ contv <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ conjudge <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ consci <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ conlegis <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ conarmy <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ joblose <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ jobfind <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ satjob <fct> A Little Dissat, NA, Mod. Satisfied, Very Satisfied, NA, M...
## $ richwork <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ jobinc <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ jobsec <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ jobhour <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ jobpromo <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ jobmeans <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ class <fct> Middle Class, Middle Class, Working Class, Middle Class, W...
## $ rank <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ satfin <fct> Not At All Sat, More Or Less, Satisfied, Not At All Sat, S...
## $ finalter <fct> Better, Stayed Same, Better, Stayed Same, Better, Better, ...
## $ finrela <fct> Average, Above Average, Average, Average, Above Average, A...
## $ unemp <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ govaid <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ getaid <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ union <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ getahead <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ parsol <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ kidssol <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ abdefect <fct> Yes, Yes, Yes, No, Yes, Yes, Yes, Yes, Yes, Yes, No, No, Y...
## $ abnomore <fct> Yes, No, Yes, No, Yes, Yes, No, Yes, No, No, No, No, No, Y...
## $ abhlth <fct> Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, NA, No, ...
## $ abpoor <fct> Yes, No, Yes, Yes, Yes, Yes, No, Yes, No, Yes, NA, Yes, No...
## $ abrape <fct> Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, NA, Yes, NA, No, N...
## $ absingle <fct> Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, No, No, NA, Yes, N...
## $ abany <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ pillok <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ sexeduc <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ divlaw <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ premarsx <fct> Not Wrong At All, Always Wrong, Always Wrong, Always Wrong...
## $ teensex <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ xmarsex <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ homosex <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ suicide1 <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ suicide2 <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ suicide3 <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ suicide4 <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ fear <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ owngun <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ pistol <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ shotgun <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ rifle <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ news <fct> Everyday, Everyday, Everyday, Once A Week, Everyday, Every...
## $ tvhours <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ racdif1 <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ racdif2 <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ racdif3 <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ racdif4 <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ helppoor <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ helpnot <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ helpsick <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ helpblk <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
bw_race <- gss %>%
filter(race == "White"| race == "Black", !is.na(educ)) %>%
group_by(race, year) %>%
summarise(avg_edu = mean(educ), counts = n())## `summarise()` regrouping output by 'race' (override with `.groups` argument)
## # A tibble: 58 x 4
## # Groups: race [2]
## race year avg_edu counts
## <fct> <int> <dbl> <int>
## 1 White 1972 11.6 1347
## 2 White 1973 11.8 1303
## 3 White 1974 12.0 1301
## 4 White 1975 11.9 1320
## 5 White 1976 11.8 1356
## 6 White 1977 11.8 1333
## 7 White 1978 12.0 1352
## 8 White 1980 12.1 1313
## 9 White 1982 12.1 1318
## 10 White 1983 12.4 1415
## # ... with 48 more rows
# Education's distribution comparing
ggplot(data = bw_race, aes(x = race, y = avg_edu, fill = race)) +
geom_boxplot() +
ggtitle("Education level comparison of White and Black people") +
ylab("Average education level") The box plot shows the distribution of education level of black and white people.
Next, Let’s see the education trend by year.
ggplot(data = bw_race, aes(x = year, y = avg_edu, color = race)) +
geom_line(size = 1) +
ggtitle("Average Education lv. trend of Black and White people") +
ylab("Average Education level") The graph shows that the both of average of black&white's education lv. are fairly increased by year.
\(H_0: \mu_{edu-white} = \mu_{edu-black}\); \(H_A: \mu_{edu-white} \ne \mu_{edu-black}\)
## # A tibble: 2 x 2
## # Groups: race [2]
## race n
## <fct> <int>
## 1 White 29
## 2 Black 29
## [1] "White" "Black" "Other"
##
## White Black Other
## 29 29 0
## [1] "White" "Black"
inference(y = avg_edu, x = race, data = bw_race, statistic = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")## Response variable: numerical
## Explanatory variable: categorical (2 levels)
## n_White = 29, y_bar_White = 12.7745, s_White = 0.7068
## n_Black = 29, y_bar_Black = 11.6176, s_Black = 0.9983
## H0: mu_White = mu_Black
## HA: mu_White != mu_Black
## t = 5.0934, df = 28
## p_value = < 0.0001
inference(y = avg_edu, x = race, data = bw_race, statistic = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical")## Response variable: numerical, Explanatory variable: categorical (2 levels)
## n_White = 29, y_bar_White = 12.7745, s_White = 0.7068
## n_Black = 29, y_bar_Black = 11.6176, s_Black = 0.9983
## 95% CI (White - Black): (0.6916 , 1.6221)
As the result, The P-value is nearly to zero. There for The null hypothesis is rejected. And the conclusion is we are 95% confident that the average of education of white people is more(0.6916 - 1.6221) than the black people