## taking subset of numeric variables
Default.active <- Default.df[,c(2,6,7,8)]
head(Default.active)## CreditLimit Age BillOutstanding LastPayment
## 1 20000 24 3913 0
## 2 120000 26 2682 0
## 3 90000 34 29239 1518
## 4 50000 37 46990 2000
## 5 50000 57 8617 2000
## 6 50000 37 64400 2500
## **Results for the Principal Component Analysis (PCA)**
## The analysis was performed on 29601 individuals, described by 4 variables
## *The results are available in the following objects:
##
## name description
## 1 "$eig" "eigenvalues"
## 2 "$var" "results for the variables"
## 3 "$var$coord" "coord. for the variables"
## 4 "$var$cor" "correlations variables - dimensions"
## 5 "$var$cos2" "cos2 for the variables"
## 6 "$var$contrib" "contributions of the variables"
## 7 "$ind" "results for the individuals"
## 8 "$ind$coord" "coord. for the individuals"
## 9 "$ind$cos2" "cos2 for the individuals"
## 10 "$ind$contrib" "contributions of the individuals"
## 11 "$call" "summary statistics"
## 12 "$call$centre" "mean of the variables"
## 13 "$call$ecart.type" "standard error of the variables"
## 14 "$call$row.w" "weights for the individuals"
## 15 "$call$col.w" "weights for the variables"
# We’ll use the factoextra R package to help in the interpretation of PCA. No matter what function you decide to use
# These functions include:
#get_eigenvalue(res.pca): Extract the eigenvalues/variances of principal components
#fviz_eig(res.pca): Visualize the eigenvalues
#get_pca_ind(res.pca), get_pca_var(res.pca): Extract the results for individuals and variables, respectively.
#fviz_pca_ind(res.pca), fviz_pca_var(res.pca): Visualize the results individuals and variables, respectively.
#fviz_pca_biplot(res.pca): Make a biplot of individuals and variables.
#In the next sections, we’ll illustrate each of these functions.## eigenvalue variance.percent cumulative.variance.percent
## Dim.1 1.4603748 36.50937 36.50937
## Dim.2 0.9843115 24.60779 61.11716
## Dim.3 0.8637435 21.59359 82.71074
## Dim.4 0.6915702 17.28926 100.00000
## Principal Component Analysis Results for variables
## ===================================================
## Name Description
## 1 "$coord" "Coordinates for the variables"
## 2 "$cor" "Correlations between variables and dimensions"
## 3 "$cos2" "Cos2 for the variables"
## 4 "$contrib" "contributions of the variables"
## Warning: package 'corrplot' was built under R version 4.0.3
## corrplot 0.84 loaded