load packages
library('lattice')
library('ggplot2')
library('pastecs')
## Warning: package 'pastecs' was built under R version 4.0.4
Descriptive Statistics
## X Y
## 1 25 16
## 2 15 11
## 3 13 12
## 4 8 10
## 5 6 7
## 6 4 5
## X Y
## Min. : 1.00 Min. : 1.00
## 1st Qu.: 2.50 1st Qu.: 3.50
## Median : 5.00 Median : 7.50
## Mean : 8.00 Mean : 7.50
## 3rd Qu.:11.75 3rd Qu.:10.75
## Max. :25.00 Max. :16.00
stat.desc(dta, basic = TRUE, desc=TRUE, norm=FALSE, p=0.95)
## X Y
## nbr.val 10.0000000 10.0000000
## nbr.null 0.0000000 0.0000000
## nbr.na 0.0000000 0.0000000
## min 1.0000000 1.0000000
## max 25.0000000 16.0000000
## range 24.0000000 15.0000000
## sum 80.0000000 75.0000000
## median 5.0000000 7.5000000
## mean 8.0000000 7.5000000
## SE.mean 2.4037009 1.5293426
## CI.mean.0.95 5.4375491 3.4596134
## var 57.7777778 23.3888889
## std.dev 7.6011695 4.8362060
## coef.var 0.9501462 0.6448275
## X Y
## X 1.0000000 0.8946723
## Y 0.8946723 1.0000000
Scatter diagram
xyplot(Y ~ X, data=dta,
ylab="Y",
xlab="X",
type=c("p", "g", "r"))

regressor <- lm(formula = Y~X, data = dta)
linear models
model <- lm(formula= Y ~ X, data=dta)
summary(model)
##
## Call:
## lm(formula = Y ~ X, data = dta)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5154 -1.8577 -0.3538 1.4000 3.9154
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.9462 1.0823 2.722 0.026162 *
## X 0.5692 0.1005 5.665 0.000473 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.291 on 8 degrees of freedom
## Multiple R-squared: 0.8004, Adjusted R-squared: 0.7755
## F-statistic: 32.09 on 1 and 8 DF, p-value: 0.0004733
Data visualisation
ggplot(data = dta, aes(x=X))+
geom_smooth(aes(y=Y), method = 'lm')+
geom_point(aes(y=Y))
## `geom_smooth()` using formula 'y ~ x'

The end