Clustering with Panel Data.

Preparing Data

DATA<-read.csv('E:/ConvertDGR.csv',header=F,sep=';');str(DATA) 
## 'data.frame':    33 obs. of  41 variables:
##  $ V1 : chr  "A101" "A102" "A103" "A104" ...
##  $ V2 : num  69.1 67.5 67.6 70.2 69.9 ...
##  $ V3 : num  69.2 67.6 67.8 70.3 70 ...
##  $ V4 : num  69.2 67.8 68 70.5 70.2 ...
##  $ V5 : num  69.3 67.9 68.2 70.7 70.3 ...
##  $ V6 : num  69.3 68 68.3 70.8 70.4 ...
##  $ V7 : num  69.5 68.3 68.7 70.9 70.6 ...
##  $ V8 : num  69.5 68.3 68.7 71 70.7 ...
##  $ V9 : num  69.5 68.4 68.8 71 70.8 ...
##  $ V10: num  69.6 68.6 69 71.2 70.9 ...
##  $ V11: num  69.9 69 69.3 71.5 71.1 ...
##  $ V12: num  8.28 8.51 8.13 8.25 7.34 7.34 7.85 7.26 7.07 9.38 ...
##  $ V13: num  8.32 8.61 8.2 8.29 7.48 7.42 7.93 7.28 7.19 9.46 ...
##  $ V14: num  8.36 8.72 8.27 8.34 7.69 7.5 8.01 7.3 7.25 9.58 ...
##  $ V15: num  8.44 8.79 8.28 8.38 7.8 7.53 8.09 7.32 7.32 9.63 ...
##  $ V16: num  8.71 8.93 8.29 8.47 7.92 7.66 8.28 7.48 7.35 9.64 ...
##  $ V17: num  8.77 9.03 8.42 8.49 7.96 7.77 8.29 7.56 7.46 9.65 ...
##  $ V18: num  8.86 9.12 8.59 8.59 8.07 7.83 8.37 7.63 7.62 9.67 ...
##  $ V19: num  8.98 9.25 8.72 8.76 8.15 7.99 8.47 7.79 7.78 9.79 ...
##  $ V20: num  9.09 9.34 8.76 8.92 8.23 8 8.61 7.82 7.84 9.81 ...
##  $ V21: num  9.18 9.45 8.92 9.03 8.45 8.18 8.73 7.92 7.98 9.99 ...
##  $ V22: num  8.28 8.51 8.13 8.25 7.34 7.34 7.85 7.26 7.07 9.38 ...
##  $ V23: num  8.32 8.61 8.2 8.29 7.48 7.42 7.93 7.28 7.19 9.46 ...
##  $ V24: num  8.36 8.72 8.27 8.34 7.69 7.5 8.01 7.3 7.25 9.58 ...
##  $ V25: num  8.44 8.79 8.28 8.38 7.8 7.53 8.09 7.32 7.32 9.63 ...
##  $ V26: num  8.71 8.93 8.29 8.47 7.92 7.66 8.28 7.48 7.35 9.64 ...
##  $ V27: num  8.77 9.03 8.42 8.49 7.96 7.77 8.29 7.56 7.46 9.65 ...
##  $ V28: num  8.86 9.12 8.59 8.59 8.07 7.83 8.37 7.63 7.62 9.67 ...
##  $ V29: num  8.98 9.25 8.72 8.76 8.15 7.99 8.47 7.79 7.78 9.79 ...
##  $ V30: num  9.09 9.34 8.76 8.92 8.23 8 8.61 7.82 7.84 9.81 ...
##  $ V31: num  9.18 9.45 8.92 9.03 8.45 8.18 8.73 7.92 7.98 9.99 ...
##  $ V32: num  7934 9196 9339 9857 8478 ...
##  $ V33: num  8044 9231 9409 9957 8664 ...
##  $ V34: num  8134 9266 9479 10058 8944 ...
##  $ V35: num  8289 9309 9570 10180 9066 ...
##  $ V36: num  8297 9391 9621 10262 9141 ...
##  $ V37: num  8533 9563 9804 10364 9446 ...
##  $ V38: num  8768 9744 10126 10465 9795 ...
##  $ V39: num  8957 10036 10306 10677 9880 ...
##  $ V40: num  9186 10391 10638 10968 10357 ...
##  $ V41: num  9603 10649 10925 11255 10592 ...
DATA 
##      V1    V2    V3    V4    V5    V6    V7    V8    V9   V10   V11   V12   V13
## 1  A101 69.08 69.15 69.23 69.31 69.35 69.50 69.51 69.52 69.64 69.87  8.28  8.32
## 2  A102 67.46 67.63 67.81 67.94 68.04 68.29 68.33 68.37 68.61 68.95  8.51  8.61
## 3  A103 67.59 67.79 68.00 68.21 68.32 68.66 68.73 68.78 69.01 69.31  8.13  8.20
## 4  A104 70.15 70.32 70.49 70.67 70.76 70.93 70.97 70.99 71.19 71.48  8.25  8.29
## 5  A105 69.89 70.04 70.19 70.35 70.43 70.56 70.71 70.76 70.89 71.06  7.34  7.48
## 6  A106 68.34 68.51 68.67 68.84 68.93 69.14 69.16 69.18 69.41 69.65  7.34  7.42
## 7  A107 67.82 67.98 68.16 68.33 68.36 68.50 68.56 68.59 68.84 69.21  7.85  7.93
## 8  A108 68.91 69.12 69.33 69.55 69.66 69.90 69.94 69.95 70.18 70.51  7.26  7.28
## 9  A109 69.15 69.31 69.48 69.64 69.72 69.88 69.92 69.95 70.18 70.50  7.07  7.19
## 10 A110 68.42 68.63 68.85 69.05 69.15 69.41 69.45 69.48 69.64 69.80  9.38  9.46
## 11 A111 71.71 71.87 72.03 72.19 72.27 72.43 72.49 72.55 72.67 72.79 10.37 10.40
## 12 A112 71.29 71.56 71.82 72.09 72.23 72.41 72.44 72.47 72.66 72.85  7.40  7.46
## 13 A113 72.73 72.91 73.09 73.28 73.88 73.96 74.02 74.08 74.18 74.23  6.71  6.74
## 14 A114 74.17 74.26 74.36 74.45 74.50 74.68 74.71 74.74 74.82 74.92  8.51  8.53
## 15 A115 69.89 70.02 70.14 70.34 70.45 70.68 70.74 70.80 70.97 71.18  6.73  6.79
## 16 A116 68.50 68.68 68.86 69.04 69.13 69.43 69.46 69.49 69.64 69.84  7.92  7.95
## 17 A117 70.61 70.78 70.94 71.11 71.19 71.35 71.41 71.46 71.68 71.99  7.74  7.77
## 18 A118 63.82 64.13 64.43 64.74 64.89 65.38 65.48 65.55 65.87 66.28  5.73  6.07
## 19 A119 65.28 65.45 65.64 65.82 65.91 65.96 66.04 66.07 66.38 66.85  6.50  6.60
## 20 A120 69.06 69.26 69.46 69.66 69.76 69.87 69.90 69.92 70.18 70.56  6.27  6.32
## 21 A121 68.98 69.09 69.18 69.29 69.39 69.54 69.57 69.59 69.64 69.69  7.62  7.68
## 22 A122 66.65 66.88 67.11 67.35 67.47 67.80 67.92 68.02 68.23 68.49  7.25  7.37
## 23 A123 72.89 73.10 73.32 73.52 73.62 73.65 73.68 73.70 73.96 74.22  8.56  8.79
## 24 A124 70.40 70.55 70.70 70.86 70.94 70.99 71.02 71.04 71.26 71.58  8.66  8.68
## 25 A125 66.07 66.39 66.70 67.02 67.18 67.26 67.31 67.32 67.78 68.23  7.65  7.69
## 26 A126 68.93 69.12 69.31 69.50 69.59 69.80 69.82 69.84 70.08 70.43  7.29  7.33
## 27 A127 69.65 69.85 70.06 70.28 70.39 70.44 70.46 70.47 70.72 70.97  7.57  7.67
## 28 A128 66.41 66.59 66.76 66.92 67.00 67.12 67.13 67.14 67.45 67.93  6.85  6.89
## 29 A129 62.50 62.78 63.04 63.32 64.04 64.22 64.31 64.34 64.58 64.82  6.63  6.65
## 30 A130 64.46 64.61 64.77 64.93 65.01 65.31 65.35 65.40 65.59 65.82  8.64  8.72
## 31 A131 66.70 66.87 67.05 67.24 67.33 67.44 67.51 67.54 67.80 68.18  7.91  7.98
## 32 A132 64.59 64.75 64.88 65.05 65.13 65.19 65.30 65.32 65.55 65.90  6.77  6.82
## 33 A133 64.31 64.46 64.60 64.76 64.84 65.09 65.12 65.14 65.36 65.65  5.59  5.60
##      V14   V15   V16   V17   V18   V19   V20   V21   V22   V23   V24   V25
## 1   8.36  8.44  8.71  8.77  8.86  8.98  9.09  9.18  8.28  8.32  8.36  8.44
## 2   8.72  8.79  8.93  9.03  9.12  9.25  9.34  9.45  8.51  8.61  8.72  8.79
## 3   8.27  8.28  8.29  8.42  8.59  8.72  8.76  8.92  8.13  8.20  8.27  8.28
## 4   8.34  8.38  8.47  8.49  8.59  8.76  8.92  9.03  8.25  8.29  8.34  8.38
## 5   7.69  7.80  7.92  7.96  8.07  8.15  8.23  8.45  7.34  7.48  7.69  7.80
## 6   7.50  7.53  7.66  7.77  7.83  7.99  8.00  8.18  7.34  7.42  7.50  7.53
## 7   8.01  8.09  8.28  8.29  8.37  8.47  8.61  8.73  7.85  7.93  8.01  8.09
## 8   7.30  7.32  7.48  7.56  7.63  7.79  7.82  7.92  7.26  7.28  7.30  7.32
## 9   7.25  7.32  7.35  7.46  7.62  7.78  7.84  7.98  7.07  7.19  7.25  7.32
## 10  9.58  9.63  9.64  9.65  9.67  9.79  9.81  9.99  9.38  9.46  9.58  9.63
## 11 10.43 10.47 10.54 10.70 10.88 11.02 11.05 11.06 10.37 10.40 10.43 10.47
## 12  7.52  7.58  7.71  7.86  7.95  8.14  8.15  8.37  7.40  7.46  7.52  7.58
## 13  6.77  6.80  6.93  7.03  7.15  7.27  7.35  7.53  6.71  6.74  6.77  6.80
## 14  8.63  8.72  8.84  9.00  9.12  9.19  9.32  9.38  8.51  8.53  8.63  8.72
## 15  6.85  6.90  7.05  7.14  7.23  7.34  7.39  7.59  6.73  6.79  6.85  6.90
## 16  8.06  8.17  8.19  8.27  8.37  8.53  8.62  8.74  7.92  7.95  8.06  8.17
## 17  8.05  8.10  8.11  8.26  8.36  8.55  8.65  8.84  7.74  7.77  8.05  8.10
## 18  6.33  6.54  6.67  6.71  6.79  6.90  7.03  7.27  5.73  6.07  6.33  6.54
## 19  6.71  6.76  6.85  6.93  7.02  7.15  7.30  7.55  6.50  6.60  6.71  6.76
## 20  6.62  6.69  6.83  6.93  6.98  7.05  7.12  7.31  6.27  6.32  6.62  6.69
## 21  7.73  7.79  7.82  8.03  8.13  8.29  8.37  8.51  7.62  7.68  7.73  7.79
## 22  7.48  7.59  7.60  7.76  7.89  7.99  8.00  8.20  7.25  7.37  7.48  7.59
## 23  8.83  8.87  9.04  9.15  9.24  9.36  9.48  9.70  8.56  8.79  8.83  8.87
## 24  8.71  8.79  8.86  8.88  8.96  9.14  9.24  9.43  8.66  8.68  8.71  8.79
## 25  7.73  7.82  7.89  7.97  8.12  8.29  8.52  8.75  7.65  7.69  7.73  7.82
## 26  7.37  7.45  7.49  7.64  7.75  7.95  8.02  8.26  7.29  7.33  7.37  7.45
## 27  7.76  7.93  8.02  8.18  8.32  8.46  8.69  8.91  7.57  7.67  7.76  7.93
## 28  6.92  6.96  6.97  7.05  7.12  7.28  7.46  7.69  6.85  6.89  6.92  6.96
## 29  6.76  6.87  6.88  6.94  7.14  7.31  7.50  7.73  6.63  6.65  6.76  6.87
## 30  8.80  8.81  9.15  9.16  9.27  9.38  9.58  9.81  8.64  8.72  8.80  8.81
## 31  8.04  8.27  8.34  8.37  8.52  8.61  8.72  9.00  7.91  7.98  8.04  8.27
## 32  6.87  6.91  6.96  7.01  7.06  7.15  7.27  7.44  6.77  6.82  6.87  6.91
## 33  5.73  5.74  5.76  5.99  6.15  6.27  6.52  6.65  5.59  5.60  5.73  5.74
##      V26   V27   V28   V29   V30   V31   V32   V33   V34   V35   V36   V37
## 1   8.71  8.77  8.86  8.98  9.09  9.18  7934  8044  8134  8289  8297  8533
## 2   8.93  9.03  9.12  9.25  9.34  9.45  9196  9231  9266  9309  9391  9563
## 3   8.29  8.42  8.59  8.72  8.76  8.92  9339  9409  9479  9570  9621  9804
## 4   8.47  8.49  8.59  8.76  8.92  9.03  9857  9957 10058 10180 10262 10364
## 5   7.92  7.96  8.07  8.15  8.23  8.45  8478  8664  8944  9066  9141  9446
## 6   7.66  7.77  7.83  7.99  8.00  8.18  8536  8803  9040  9231  9302  9474
## 7   8.28  8.29  8.37  8.47  8.61  8.73  8459  8572  8682  8803  8864  9123
## 8   7.48  7.56  7.63  7.79  7.82  7.92  7964  8118  8273  8415  8476  8729
## 9   7.35  7.46  7.62  7.78  7.84  7.98 10707 10808 11218 11657 11691 11781
## 10  9.64  9.65  9.67  9.79  9.81  9.99 12267 12513 12740 12942 13019 13177
## 11 10.54 10.70 10.88 11.02 11.05 11.06 15111 15943 16613 16828 16898 17075
## 12  7.71  7.86  7.95  8.14  8.15  8.37  9174  9249  9325  9421  9447  9778
## 13  6.93  7.03  7.15  7.27  7.35  7.53  8992  9296  9497  9618  9640  9930
## 14  8.84  9.00  9.12  9.19  9.32  9.38 12080 12115 12137 12261 12294 12684
## 15  7.05  7.14  7.23  7.34  7.39  7.59  9002  9396  9797  9978 10012 10383
## 16  8.19  8.27  8.37  8.53  8.62  8.74 10777 10933 11008 11061 11150 11261
## 17  8.11  8.26  8.36  8.55  8.65  8.84 12074 12307 12530 12738 12831 13078
## 18  6.67  6.71  6.79  6.90  7.03  7.27  8707  8759  8853  8950  8987  9241
## 19  6.85  6.93  7.02  7.15  7.30  7.55  6615  6678  6785  6899  6934  7003
## 20  6.83  6.93  6.98  7.05  7.12  7.31  7654  7825  8002  8127  8175  8279
## 21  7.82  8.03  8.13  8.29  8.37  8.51  9257  9472  9557  9641  9682  9809
## 22  7.60  7.76  7.89  7.99  8.00  8.20 10304 10437 10553 10655 10748 10891
## 23  9.04  9.15  9.24  9.36  9.48  9.70 10790 10927 10944 10981 11019 11229
## 24  8.86  8.88  8.96  9.14  9.24  9.43  8935  9113  9430  9583  9628  9729
## 25  7.89  7.97  8.12  8.29  8.52  8.75  7988  8077  8286  8501  8602  8768
## 26  7.49  7.64  7.75  7.95  8.02  8.26  9331  9459  9560  9632  9723  9992
## 27  8.02  8.18  8.32  8.46  8.69  8.91  8126  8249  8396  8537  8555  8697
## 28  6.97  7.05  7.12  7.28  7.46  7.69  8207  8293  8673  8719  8762  9035
## 29  6.88  6.94  7.14  7.31  7.50  7.73  8003  8049  8091  8148  8170  8260
## 30  9.15  9.16  9.27  9.38  9.58  9.81  7362  7437  7727  7872  7925  8026
## 31  8.34  8.37  8.52  8.61  8.72  9.00  6813  6935  7059  7200  7234  7423
## 32  6.96  7.01  7.06  7.15  7.27  7.44  6677  6709  6732  6896  6944  7064
## 33  5.76  5.99  6.15  6.27  6.52  6.65  6251  6303  6349  6394  6416  6469
##      V38   V39   V40   V41
## 1   8768  8957  9186  9603
## 2   9744 10036 10391 10649
## 3  10126 10306 10638 10925
## 4  10465 10677 10968 11255
## 5   9795  9880 10357 10592
## 6   9935 10220 10652 10937
## 7   9492  9778 10162 10409
## 8   9156  9413  9858 10114
## 9  11960 12066 12666 12959
## 10 13359 13566 13976 14466
## 11 17468 17707 18128 18527
## 12 10035 10285 10790 11152
## 13 10153 10377 10777 11102
## 14 13229 13521 13946 14394
## 15 10715 10973 11380 11739
## 16 11469 11659 11994 12267
## 17 13279 13573 13886 14146
## 18  9575  9877 10284 10640
## 19  7122  7350  7566  7769
## 20  8348  8472  8860  9055
## 21 10155 10492 10931 11236
## 22 11307 11600 12062 12253
## 23 11355 11612 11917 12359
## 24 10148 10422 10731 11115
## 25  9034  9311  9488  9604
## 26 10281 10489 10814 11118
## 27  8871  9094  9262  9436
## 28  9175  9532  9839 10075
## 29  8450  8736  9051  9235
## 30  8215  8433  8721  8887
## 31  7545  7792  7980  8308
## 32  7175  7493  7816  8125
## 33  6637  6996  7159  7336
DATA1<-scale(DATA[,-1])
DATA2 <-data.frame(DATA[,1],DATA1);str(DATA2)
## 'data.frame':    33 obs. of  41 variables:
##  $ DATA...1.: chr  "A101" "A102" "A103" "A104" ...
##  $ V2       : num  0.256 -0.334 -0.286 0.646 0.551 ...
##  $ V3       : num  0.217 -0.341 -0.282 0.646 0.543 ...
##  $ V4       : num  0.18 -0.343 -0.273 0.645 0.534 ...
##  $ V5       : num  0.141 -0.367 -0.267 0.646 0.527 ...
##  $ V6       : num  0.11 -0.379 -0.275 0.636 0.513 ...
##  $ V7       : num  0.0999 -0.357 -0.2173 0.6399 0.5002 ...
##  $ V8       : num  0.0845 -0.3627 -0.2111 0.6379 0.5393 ...
##  $ V9       : num  0.0758 -0.36 -0.2046 0.6328 0.5457 ...
##  $ V10      : num  0.0405 -0.3555 -0.2017 0.6365 0.5211 ...
##  $ V11      : num  0.0235 -0.3382 -0.1967 0.6564 0.4913 ...
##  $ V12      : num  0.695 0.924 0.545 0.665 -0.244 ...
##  $ V13      : num  0.668 0.96 0.547 0.638 -0.178 ...
##  $ V14      : num  0.6286 0.999 0.536 0.608 -0.0608 ...
##  $ V15      : num  0.6385 0.9998 0.4733 0.5766 -0.0222 ...
##  $ V16      : num  0.807 1.031 0.38 0.563 0.004 ...
##  $ V17      : num  0.7795 1.0465 0.4201 0.492 -0.0523 ...
##  $ V18      : num  0.7614 1.028 0.4846 0.4846 -0.0485 ...
##  $ V19      : num  0.746 1.022 0.48 0.521 -0.104 ...
##  $ V20      : num  0.761 1.02 0.418 0.584 -0.131 ...
##  $ V21      : num  0.6888 0.9757 0.4125 0.5294 -0.0869 ...
##  $ V22      : num  0.695 0.924 0.545 0.665 -0.244 ...
##  $ V23      : num  0.668 0.96 0.547 0.638 -0.178 ...
##  $ V24      : num  0.6286 0.999 0.536 0.608 -0.0608 ...
##  $ V25      : num  0.6385 0.9998 0.4733 0.5766 -0.0222 ...
##  $ V26      : num  0.807 1.031 0.38 0.563 0.004 ...
##  $ V27      : num  0.7795 1.0465 0.4201 0.492 -0.0523 ...
##  $ V28      : num  0.7614 1.028 0.4846 0.4846 -0.0485 ...
##  $ V29      : num  0.746 1.022 0.48 0.521 -0.104 ...
##  $ V30      : num  0.761 1.02 0.418 0.584 -0.131 ...
##  $ V31      : num  0.6888 0.9757 0.4125 0.5294 -0.0869 ...
##  $ V32      : num  -0.6314 0.0403 0.1165 0.3922 -0.3418 ...
##  $ V33      : num  -0.6248 -0.0224 0.0679 0.346 -0.3101 ...
##  $ V34      : num  -0.6446 -0.0887 0.0159 0.3002 -0.2468 ...
##  $ V35      : num  -0.62581 -0.13093 -0.00429 0.29167 -0.24883 ...
##  $ V36      : num  -0.64457 -0.11617 -0.00508 0.30453 -0.23692 ...
##  $ V37      : num  -0.616 -0.1234 -0.0082 0.2596 -0.1794 ...
##  $ V38      : num  -0.6127 -0.1559 0.0229 0.1816 -0.132 ...
##  $ V39      : num  -0.6421 -0.1353 -0.0085 0.1658 -0.2086 ...
##  $ V40      : num  -0.6824 -0.1297 -0.0164 0.1349 -0.1453 ...
##  $ V41      : num  -0.61 -0.1409 -0.0171 0.1308 -0.1665 ...

Load Package

library(clv)
## Loading required package: cluster
## Loading required package: class
library(cluster)
library(class)
library(rgl)
library(misc3d)
library(longitudinalData)
library(clv)
library(kml)
library(kml3d)
## 
## Attaching package: 'kml3d'
## The following object is masked from 'package:rgl':
## 
##     plot3d

Data and Function distance Manhattan

clddata <- cld3d(DATA2,timeInData =list(AHH=c(2:11),EYS=c(12:21),MYS=c(22:31),PP=c(32:41)))
str(clddata)
## Formal class 'ClusterLongData3d' [package "kml3d"] with 37 slots
##   ..@ idAll               : chr [1:33] "A101" "A102" "A103" "A104" ...
##   ..@ idFewNA             : chr [1:33] "A101" "A102" "A103" "A104" ...
##   ..@ time                : int [1:10] 1 2 3 4 5 6 7 8 9 10
##   ..@ varNames            : chr [1:4] "AHH" "EYS" "MYS" "PP"
##   ..@ traj                : num [1:33, 1:10, 1:4] 0.256 -0.334 -0.286 0.646 0.551 ...
##   .. ..- attr(*, "dimnames")=List of 3
##   .. .. ..$ : chr [1:33] "A101" "A102" "A103" "A104" ...
##   .. .. ..$ : chr [1:10] "t1" "t2" "t3" "t4" ...
##   .. .. ..$ : chr [1:4] "AHH" "EYS" "MYS" "PP"
##   ..@ dimTraj             : int [1:3] 33 10 4
##   ..@ maxNA               : num [1:4] 8 8 8 8
##   ..@ reverse             : num [1:2, 1:4] 0 1 0 1 0 1 0 1
##   .. ..- attr(*, "dimnames")=List of 2
##   .. .. ..$ : chr [1:2] "mean" "sd"
##   .. .. ..$ : chr [1:4] "AHH" "EYS" "MYS" "PP"
##   ..@ criterionActif      : chr "Calinski.Harabatz"
##   ..@ initializationMethod: chr(0) 
##   ..@ sorted              : logi(0) 
##   ..@ c1                  : list()
##   ..@ c2                  : list()
##   ..@ c3                  : list()
##   ..@ c4                  : list()
##   ..@ c5                  : list()
##   ..@ c6                  : list()
##   ..@ c7                  : list()
##   ..@ c8                  : list()
##   ..@ c9                  : list()
##   ..@ c10                 : list()
##   ..@ c11                 : list()
##   ..@ c12                 : list()
##   ..@ c13                 : list()
##   ..@ c14                 : list()
##   ..@ c15                 : list()
##   ..@ c16                 : list()
##   ..@ c17                 : list()
##   ..@ c18                 : list()
##   ..@ c19                 : list()
##   ..@ c20                 : list()
##   ..@ c21                 : list()
##   ..@ c22                 : list()
##   ..@ c23                 : list()
##   ..@ c24                 : list()
##   ..@ c25                 : list()
##   ..@ c26                 : list()
#View(clddata)
parKml3d<-function (saveFreq = 100, maxIt = 200, imputationMethod = "copyMean", 
                    distanceName = "manhattan", power = 1, distance = function() {
                    }, centerMethod = meanNA, startingCond = "nearlyAll", nbCriterion = 100, 
                    scale = TRUE) 
{
  if (distanceName == "manhattan") {
    distance <- function(x, y) {
      dist(rbind(c(x), c(y)), method = "manhattan")
    }
  }
  else {
  }
  new("ParKml", saveFreq = saveFreq, maxIt = maxIt, imputationMethod = imputationMethod, 
      distanceName = distanceName, power = power, distance = distance, 
      centerMethod = centerMethod, startingCond = startingCond, 
      nbCriterion = nbCriterion, scale = scale)
}
(mandist <- parKml3d(distanceName="manhattan",power=1,centerMethod=function(x)median(x,na.rm=TRUE)))
##    ~~~ Class: ParKml ~~~ 
##  ~ saveFreq             : 100
##  ~ maxIt                : 200
##  ~ imputationMethod     : copyMean
##  ~ distanceName         : manhattan
##  ~ power                : 1
##  ~ distance             : function(x, y) {
##       dist(rbind(c(x), c(y)), method = "manhattan")
##     }
## <environment: 0x000000001d08c2a0>
##  ~ centerMethod         : function(x)median(x,na.rm=TRUE)
##  ~ startingCond         : nearlyAll
##  ~ nbCriterion          : 100 
## 
##  ~ scale                : TRUE
#a<-kml3d(clddata1,2:10,1,toPlot="both",parAlgo=mandist)
a<-kml3d(clddata,2:10,1,toPlot="none",parAlgo=mandist)
##  ~ Slow KmL3D ~
## *********
## S

Preparing Data

#dua alternatif hasil gerombol
#satu<-clddata@c6[[1]]@clusters
satu<-clddata@c5[[1]]@clusters;satu
##  [1] B B B C A A B A A C E A A C A C C D D D A A C C B A B D D B B D D
## Levels: A B C D E
datagab1<-data.frame(DATA,satu)

View(datagab1)

c.1.datagab1<-data.frame(datagab1[datagab1$satu=="A",]) 
c.1.datagab1[,-(2:37)]
##      V1   V38   V39   V40   V41 satu
## 5  A105  9795  9880 10357 10592    A
## 6  A106  9935 10220 10652 10937    A
## 8  A108  9156  9413  9858 10114    A
## 9  A109 11960 12066 12666 12959    A
## 12 A112 10035 10285 10790 11152    A
## 13 A113 10153 10377 10777 11102    A
## 15 A115 10715 10973 11380 11739    A
## 21 A121 10155 10492 10931 11236    A
## 22 A122 11307 11600 12062 12253    A
## 26 A126 10281 10489 10814 11118    A
c.1.datagab2<-data.frame(datagab1[datagab1$satu=="B",]) 
c.1.datagab2[,-(2:37)]
##      V1   V38   V39   V40   V41 satu
## 1  A101  8768  8957  9186  9603    B
## 2  A102  9744 10036 10391 10649    B
## 3  A103 10126 10306 10638 10925    B
## 7  A107  9492  9778 10162 10409    B
## 25 A125  9034  9311  9488  9604    B
## 27 A127  8871  9094  9262  9436    B
## 30 A130  8215  8433  8721  8887    B
## 31 A131  7545  7792  7980  8308    B
c.1.datagab3<-data.frame(datagab1[datagab1$satu=="C",]) 
c.1.datagab3[,-(2:37)]
##      V1   V38   V39   V40   V41 satu
## 4  A104 10465 10677 10968 11255    C
## 10 A110 13359 13566 13976 14466    C
## 14 A114 13229 13521 13946 14394    C
## 16 A116 11469 11659 11994 12267    C
## 17 A117 13279 13573 13886 14146    C
## 23 A123 11355 11612 11917 12359    C
## 24 A124 10148 10422 10731 11115    C
c.1.datagab4<-data.frame(datagab1[datagab1$satu=="D",]) 
c.1.datagab4[,-(2:37)]
##      V1  V38  V39   V40   V41 satu
## 18 A118 9575 9877 10284 10640    D
## 19 A119 7122 7350  7566  7769    D
## 20 A120 8348 8472  8860  9055    D
## 28 A128 9175 9532  9839 10075    D
## 29 A129 8450 8736  9051  9235    D
## 32 A132 7175 7493  7816  8125    D
## 33 A133 6637 6996  7159  7336    D
c.1.datagab5<-data.frame(datagab1[datagab1$satu=="E",]) 
c.1.datagab5[,-(2:37)]
##      V1   V38   V39   V40   V41 satu
## 11 A111 17468 17707 18128 18527    E