oildata <- read.csv(url("https://raw.githubusercontent.com/chrisgmartin/DATA607/master/untidy_oil_consumption.csv"), sep = ",", stringsAsFactors=FALSE)
oildata
##    Month    Category     Caltex       Gulf      Mobil
## 1   Open  Engine Oil 140 :  000 199 :  000 141 :  000
## 2        GearBox Oil 198 :  000 132 :  000 121 :  000
## 3    Jan  Engine Oil 170 :  103 194 :  132 109 :  127
## 4        GearBox Oil 132 :  106 125 :  105 191 :  100
## 5    Feb  Engine Oil 112 :  133 138 :  113 171 :  101
## 6        GearBox Oil 193 :  148 199 :  119 134 :  127
## 7    Mar  Engine Oil 184 :  100 141 :  141 114 :  108
## 8        GearBox Oil 138 :  121 172 :  133 193 :  115
## 9    Apr  Engine Oil 149 :  150 117 :  118 117 :  118
## 10       GearBox Oil 185 :  125 191 :  133 119 :  121
## 11   May  Engine Oil 170 :  139 104 :  119 200 :  117
## 12       GearBox Oil 168 :  117 138 :  102 121 :  146
## 13   Jun  Engine Oil 159 :  129 170 :  138 169 :  105
## 14       GearBox Oil 107 :  129 195 :  141 141 :  112
oildata %>%
  pivot_longer(cols=c(Caltex, Gulf, Mobil),
               names_to = "Type",
               values_to = "Range")
## # A tibble: 42 x 4
##    Month  Category    Type   Range     
##    <chr>  <chr>       <chr>  <chr>     
##  1 "Open" Engine Oil  Caltex 140 :  000
##  2 "Open" Engine Oil  Gulf   199 :  000
##  3 "Open" Engine Oil  Mobil  141 :  000
##  4 ""     GearBox Oil Caltex 198 :  000
##  5 ""     GearBox Oil Gulf   132 :  000
##  6 ""     GearBox Oil Mobil  121 :  000
##  7 "Jan"  Engine Oil  Caltex 170 :  103
##  8 "Jan"  Engine Oil  Gulf   194 :  132
##  9 "Jan"  Engine Oil  Mobil  109 :  127
## 10 ""     GearBox Oil Caltex 132 :  106
## # … with 32 more rows
setwd("~/Desktop/DATA110")
diseases <- read.csv("us_contagious_diseases.csv")
unique(diseases$year)
##  [1] 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
## [16] 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
## [31] 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
## [46] 2011 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
## [61] 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
## [76] 1957 1958 1959 1960 1961 1962 1963 1964 1965
diseases_wide <- diseases %>%
  pivot_wider(
    names_from = year,
    values_from = c(weeks_reporting, count, population)
  ) %>%
  select(
    disease, state, ends_with("68"), ends_with("73"),
    ends_with("78"), ends_with("83"), ends_with("88"),
    ends_with("93"), ends_with("98"), ends_with("03"),
    ends_with("08")
  )
diseases_wide
## # A tibble: 357 x 29
##    disease state weeks_reporting… count_1968 population_1968 weeks_reporting…
##    <chr>   <chr>            <int>      <int>           <int>            <int>
##  1 Hepati… Alab…               52        314         3386068               45
##  2 Hepati… Alas…               31         84          284068               32
##  3 Hepati… Ariz…               50        425         1661517               22
##  4 Hepati… Arka…               38        166         1867112               44
##  5 Hepati… Cali…               52      10821        19219725               49
##  6 Hepati… Colo…               43        715         2100603               48
##  7 Hepati… Conn…               52        502         2964628               51
##  8 Hepati… Dela…               43        146          533755               39
##  9 Hepati… Dist…               36         67          765853               32
## 10 Hepati… Flor…               51       1116         6411565               49
## # … with 347 more rows, and 23 more variables: count_1973 <int>,
## #   population_1973 <int>, weeks_reporting_1978 <int>, count_1978 <int>,
## #   population_1978 <int>, weeks_reporting_1983 <int>, count_1983 <int>,
## #   population_1983 <int>, weeks_reporting_1988 <int>, count_1988 <int>,
## #   population_1988 <int>, weeks_reporting_1993 <int>, count_1993 <int>,
## #   population_1993 <int>, weeks_reporting_1998 <int>, count_1998 <int>,
## #   population_1998 <int>, weeks_reporting_2003 <int>, count_2003 <int>,
## #   population_2003 <int>, weeks_reporting_2008 <int>, count_2008 <int>,
## #   population_2008 <int>