data = read_csv("/Users/daniellefevre/Documents/DATA101/untidydata2-master/inst/messydata/gdp_by_county.csv")
Missing column names filled in: 'X1' [1], 'X2' [2], 'X3' [3], 'X4' [4], 'X5' [5], 'X6' [6], 'X7' [7], 'X8' [8], 'X9' [9]
── Column specification ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
cols(
  X1 = col_character(),
  X2 = col_character(),
  X3 = col_character(),
  X4 = col_character(),
  X5 = col_character(),
  X6 = col_character(),
  X7 = col_character(),
  X8 = col_character(),
  X9 = col_character()
)
view(data)
str(data)
spec_tbl_df [12,459 × 9] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
 $ X1: chr [1:12459] "FIPS" NA NA "01001" ...
 $ X2: chr [1:12459] "Countyname" NA NA "Autauga" ...
 $ X3: chr [1:12459] "Postal" NA NA "AL" ...
 $ X4: chr [1:12459] "LineCode" NA NA "1" ...
 $ X5: chr [1:12459] "IndustryName" NA NA "All Industries" ...
 $ X6: chr [1:12459] "Gross domestic product (GDP) by county" "(thousands of dollars)" "2012" "1383941" ...
 $ X7: chr [1:12459] NA NA "2013" "1363368" ...
 $ X8: chr [1:12459] NA NA "2014" "1402516" ...
 $ X9: chr [1:12459] NA NA "2015" "1539406" ...
 - attr(*, "spec")=
  .. cols(
  ..   X1 = col_character(),
  ..   X2 = col_character(),
  ..   X3 = col_character(),
  ..   X4 = col_character(),
  ..   X5 = col_character(),
  ..   X6 = col_character(),
  ..   X7 = col_character(),
  ..   X8 = col_character(),
  ..   X9 = col_character()
  .. )
names(data) = c("FIPS", "Countyname", "Postal", "LineCode", "IndustryName", "2012", "2013", "2014", "2015")
names(data)
[1] "FIPS"         "Countyname"   "Postal"       "LineCode"     "IndustryName" "2012"         "2013"         "2014"         "2015"        
data <- slice(data, 4:12459)
view(data)
data <- pivot_longer(data, cols=c("2012", "2013", "2014", "2015"), names_to = "year")
head(data)
#pivot_wider(data, names_from = IndustryName, values_from = value)
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKCmBgYHtyfQpkYXRhID0gcmVhZF9jc3YoIi9Vc2Vycy9kYW5pZWxsZWZldnJlL0RvY3VtZW50cy9EQVRBMTAxL3VudGlkeWRhdGEyLW1hc3Rlci9pbnN0L21lc3N5ZGF0YS9nZHBfYnlfY291bnR5LmNzdiIpCmBgYAoKYGBge3J9CnZpZXcoZGF0YSkKYGBgCgpgYGB7cn0Kc3RyKGRhdGEpCmBgYAoKYGBge3J9Cm5hbWVzKGRhdGEpID0gYygiRklQUyIsICJDb3VudHluYW1lIiwgIlBvc3RhbCIsICJMaW5lQ29kZSIsICJJbmR1c3RyeU5hbWUiLCAiMjAxMiIsICIyMDEzIiwgIjIwMTQiLCAiMjAxNSIpCmBgYAoKYGBge3J9Cm5hbWVzKGRhdGEpCmBgYAoKYGBge3J9CmRhdGEgPC0gc2xpY2UoZGF0YSwgNDoxMjQ1OSkKYGBgCgpgYGB7cn0KdmlldyhkYXRhKQpgYGAKCmBgYHtyfQpkYXRhIDwtIHBpdm90X2xvbmdlcihkYXRhLCBjb2xzPWMoIjIwMTIiLCAiMjAxMyIsICIyMDE0IiwgIjIwMTUiKSwgbmFtZXNfdG8gPSAieWVhciIpCmBgYAoKYGBge3J9CmhlYWQoZGF0YSkKYGBgCgoKYGBge3J9CiNwaXZvdF93aWRlcihkYXRhLCBuYW1lc19mcm9tID0gSW5kdXN0cnlOYW1lLCB2YWx1ZXNfZnJvbSA9IHZhbHVlKQpgYGAKCg==