Data References :- https://www.kaggle.com/andrewmvd/heart-failure-clinical-data

Package References :- https://modelstudio.drwhy.ai/articles/ms-r-python-examples.html

## Warning: package 'readr' was built under R version 4.0.3
## 
## -- Column specification --------------------------------------------------------
## cols(
##   age = col_double(),
##   anaemia = col_double(),
##   creatinine_phosphokinase = col_double(),
##   diabetes = col_double(),
##   ejection_fraction = col_double(),
##   high_blood_pressure = col_double(),
##   platelets = col_double(),
##   serum_creatinine = col_double(),
##   serum_sodium = col_double(),
##   sex = col_double(),
##   smoking = col_double(),
##   time = col_double(),
##   DEATH_EVENT = col_double()
## )
## tibble [299 x 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ age                     : num [1:299] 75 55 65 50 65 90 75 60 65 80 ...
##  $ anaemia                 : num [1:299] 0 0 0 1 1 1 1 1 0 1 ...
##  $ creatinine_phosphokinase: num [1:299] 582 7861 146 111 160 ...
##  $ diabetes                : num [1:299] 0 0 0 0 1 0 0 1 0 0 ...
##  $ ejection_fraction       : num [1:299] 20 38 20 20 20 40 15 60 65 35 ...
##  $ high_blood_pressure     : num [1:299] 1 0 0 0 0 1 0 0 0 1 ...
##  $ platelets               : num [1:299] 265000 263358 162000 210000 327000 ...
##  $ serum_creatinine        : num [1:299] 1.9 1.1 1.3 1.9 2.7 2.1 1.2 1.1 1.5 9.4 ...
##  $ serum_sodium            : num [1:299] 130 136 129 137 116 132 137 131 138 133 ...
##  $ sex                     : num [1:299] 1 1 1 1 0 1 1 1 0 1 ...
##  $ smoking                 : num [1:299] 0 0 1 0 0 1 0 1 0 1 ...
##  $ time                    : num [1:299] 4 6 7 7 8 8 10 10 10 10 ...
##  $ DEATH_EVENT             : num [1:299] 1 1 1 1 1 1 1 1 1 1 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   age = col_double(),
##   ..   anaemia = col_double(),
##   ..   creatinine_phosphokinase = col_double(),
##   ..   diabetes = col_double(),
##   ..   ejection_fraction = col_double(),
##   ..   high_blood_pressure = col_double(),
##   ..   platelets = col_double(),
##   ..   serum_creatinine = col_double(),
##   ..   serum_sodium = col_double(),
##   ..   sex = col_double(),
##   ..   smoking = col_double(),
##   ..   time = col_double(),
##   ..   DEATH_EVENT = col_double()
##   .. )
##       age           anaemia       creatinine_phosphokinase    diabetes     
##  Min.   :40.00   Min.   :0.0000   Min.   :  23.0           Min.   :0.0000  
##  1st Qu.:51.00   1st Qu.:0.0000   1st Qu.: 116.5           1st Qu.:0.0000  
##  Median :60.00   Median :0.0000   Median : 250.0           Median :0.0000  
##  Mean   :60.83   Mean   :0.4314   Mean   : 581.8           Mean   :0.4181  
##  3rd Qu.:70.00   3rd Qu.:1.0000   3rd Qu.: 582.0           3rd Qu.:1.0000  
##  Max.   :95.00   Max.   :1.0000   Max.   :7861.0           Max.   :1.0000  
##  ejection_fraction high_blood_pressure   platelets      serum_creatinine
##  Min.   :14.00     Min.   :0.0000      Min.   : 25100   Min.   :0.500   
##  1st Qu.:30.00     1st Qu.:0.0000      1st Qu.:212500   1st Qu.:0.900   
##  Median :38.00     Median :0.0000      Median :262000   Median :1.100   
##  Mean   :38.08     Mean   :0.3512      Mean   :263358   Mean   :1.394   
##  3rd Qu.:45.00     3rd Qu.:1.0000      3rd Qu.:303500   3rd Qu.:1.400   
##  Max.   :80.00     Max.   :1.0000      Max.   :850000   Max.   :9.400   
##   serum_sodium        sex            smoking            time      
##  Min.   :113.0   Min.   :0.0000   Min.   :0.0000   Min.   :  4.0  
##  1st Qu.:134.0   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.: 73.0  
##  Median :137.0   Median :1.0000   Median :0.0000   Median :115.0  
##  Mean   :136.6   Mean   :0.6488   Mean   :0.3211   Mean   :130.3  
##  3rd Qu.:140.0   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:203.0  
##  Max.   :148.0   Max.   :1.0000   Max.   :1.0000   Max.   :285.0  
##   DEATH_EVENT    
##  Min.   :0.0000  
##  1st Qu.:0.0000  
##  Median :0.0000  
##  Mean   :0.3211  
##  3rd Qu.:1.0000  
##  Max.   :1.0000
## [1] 299  13
##  [1] "age"                      "anaemia"                 
##  [3] "creatinine_phosphokinase" "diabetes"                
##  [5] "ejection_fraction"        "high_blood_pressure"     
##  [7] "platelets"                "serum_creatinine"        
##  [9] "serum_sodium"             "sex"                     
## [11] "smoking"                  "time"                    
## [13] "DEATH_EVENT"
## Warning: package 'tidymodels' was built under R version 4.0.3
## -- Attaching packages -------------------------------------- tidymodels 0.1.2 --
## v broom     0.7.4      v recipes   0.1.15
## v dials     0.0.9      v rsample   0.0.8 
## v dplyr     1.0.3      v tibble    3.0.5 
## v ggplot2   3.3.3      v tidyr     1.1.2 
## v infer     0.5.4      v tune      0.1.2 
## v modeldata 0.1.0      v workflows 0.2.1 
## v parsnip   0.1.5      v yardstick 0.0.7 
## v purrr     0.3.4
## Warning: package 'dials' was built under R version 4.0.3
## Warning: package 'scales' was built under R version 4.0.3
## Warning: package 'dplyr' was built under R version 4.0.3
## Warning: package 'ggplot2' was built under R version 4.0.3
## Warning: package 'infer' was built under R version 4.0.3
## Warning: package 'modeldata' was built under R version 4.0.3
## Warning: package 'parsnip' was built under R version 4.0.3
## Warning: package 'purrr' was built under R version 4.0.3
## Warning: package 'recipes' was built under R version 4.0.3
## Warning: package 'rsample' was built under R version 4.0.3
## Warning: package 'tibble' was built under R version 4.0.3
## Warning: package 'tidyr' was built under R version 4.0.3
## Warning: package 'tune' was built under R version 4.0.3
## Warning: package 'workflows' was built under R version 4.0.3
## Warning: package 'yardstick' was built under R version 4.0.3
## -- Conflicts ----------------------------------------- tidymodels_conflicts() --
## x purrr::discard()  masks scales::discard()
## x dplyr::filter()   masks stats::filter()
## x dplyr::lag()      masks stats::lag()
## x yardstick::spec() masks readr::spec()
## x recipes::step()   masks stats::step()
## Warning: package 'DALEXtra' was built under R version 4.0.4
## Loading required package: DALEX
## Warning: package 'DALEX' was built under R version 4.0.4
## Welcome to DALEX (version: 2.1.1).
## Find examples and detailed introduction at: http://ema.drwhy.ai/
## 
## Attaching package: 'DALEX'
## The following object is masked from 'package:dplyr':
## 
##     explain
## Warning: package 'modelStudio' was built under R version 4.0.4
## Preparation of a new explainer is initiated
##   -> model label       :  tidymodels 
##   -> data              :  90  rows  13  cols 
##   -> data              :  tibble converted into a data.frame 
##   -> target variable   :  90  values 
##   -> predict function  :  yhat.workflow  will be used (  default  )
##   -> predicted values  :  No value for predict function target column. (  default  )
##   -> model_info        :  package tidymodels , ver. 0.1.2 , task classification (  default  ) 
##   -> predicted values  :  numerical, min =  0.02850621 , mean =  0.3204935 , max =  0.7899482  
##   -> residual function :  difference between y and yhat (  default  )
##   -> residuals         :  numerical, min =  -0.5645715 , mean =  0.05728431 , max =  0.880372  
##   A new explainer has been created! 
## Warning: Setting row names on a tibble is deprecated.
## Warning in value[[3L]](cond): 
## Error occurred in ingredients::ceteris_paribus (1)         function: 'x' must be atomic
## Warning in value[[3L]](cond): 
## Error occurred in ingredients::ceteris_paribus (2)         function: 'x' must be atomic
## Warning: package 'xgboost' was built under R version 4.0.3
## 
## Attaching package: 'xgboost'
## The following object is masked from 'package:dplyr':
## 
##     slice
## Preparation of a new explainer is initiated
##   -> model label       :  xgboost 
##   -> data              :  90  rows  12  cols 
##   -> target variable   :  90  values 
##   -> predict function  :  yhat.xgb.Booster  will be used (  default  )
##   -> predicted values  :  No value for predict function target column. (  default  )
##   -> model_info        :  package xgboost , ver. 1.3.2.1 , task classification (  default  ) 
##   -> predicted values  :  numerical, min =  1.291269e-06 , mean =  0.3168861 , max =  0.999975  
##   -> residual function :  difference between y and yhat (  default  )
##   -> residuals         :  numerical, min =  -0.9774441 , mean =  0.08311394 , max =  0.9966721  
##   A new explainer has been created!