knitr::opts_chunk$set(echo = TRUE)
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyr)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v tibble 3.0.4 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.0
## v purrr 0.3.4
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(knitr)
#reading in merged Gifted and Talented File -- with only the columns needed
setwd("C:/Users/BlaiseSevier/Desktop/R Work")
fileGT <- "Gifted and Talented_Cali.csv"
GT.sch <- read.csv(fileGT)
#############
fileCA <- "fs141cali.csv"
CA.Enrol.k12 <- read.csv(fileCA)
### How to set your working directory
## In quotation marks, ("C: /Users/BlaiseSevier/Desktop/R Work")
#################### Change code from negative numbers to 0s
els.k12 <-5296851
nonel.k12 <- 45625438
GT.sch[GT.sch==-8]<-0
GT.sch[GT.sch==-9]<-0
GT.sch[GT.sch==-8]<-0
GT.sch[GT.sch==-6]<-0
GT.sch[GT.sch==-5]<-0
GT.sch[GT.sch==-3]<-0
# Reserve code value
# Definition
# -3 | Skip Logic Failure
# -5 | Action Plan
# -6 | Force Certified
# -8 | EDFacts Missing Data
# -9 | Not Applicable / Skipped
# -11 | Suppressed Data
For more information about the school form see: https://www2.ed.gov/about/offices/list/ocr/docs/2017-18-crdc-school-form.pdf.
TOT_GTENR_M Gifted and Talented Student Enrollment: Calculated Male Total TOT_GTENR_F Gifted and Talented Student Enrollment: Calculated Female Total SCH_GTENR_LEP_M Gifted and Talented Student Enrollment: LEP Male SCH_GTENR_LEP_F Gifted and Talented Student Enrollment: LEP Female
## From FS 141
num.k12.el.CA <- sum(CA.Enrol.k12$Value)
## From NCES All Enrollment Data
num.k12.non.el.CA <- 6304266 - num.k12.el.CA
#1197286
#Computes the total number of a non-English Learner male students in pre school
#dat$NonELM<- (dat$TOT_ENR_M - dat$TOT_LEPENR_M)
GT.sch$NonELM <- (GT.sch$TOT_GTENR_M - GT.sch$SCH_GTENR_LEP_M)
sum(GT.sch$NonELM)
## [1] 184182
# 1,618,641 Non English learner males in GT in the US
#184,182 Non El Males in California
#Total female non-EL
#dat$NonELF <-dat$TOT_ENR_F-dat$TOT_LEPENR_F
GT.sch$NonELF <- (GT.sch$TOT_GTENR_F - GT.sch$SCH_GTENR_LEP_F)
sum(GT.sch$NonELF)
## [1] 186611
## There are 1,630,767 Non English Learner Females in Gifted and Talented in the uS
# There are 186,611 Non English Learner Females in Gifted and Talented in California
#total non EL
#dat$NonEL<-dat$NonELF + dat$NonELM
GT.sch$NonEL <- GT.sch$NonELF + GT.sch$NonELM
non.el.GT <- sum(GT.sch$NonEL)
non.el.GT
## [1] 370793
#There are 3,249,408 non english learners in Gifted and Talented in the US
# There are 370,793 non english learners in Gifted and Talented in California
#Total Lep Male in Gifted and Talented
#dat$ELMGT <- dat$SCH_GTENR_LEP_M
GT.sch$ELMGEOM <- GT.sch$SCH_GTENR_LEP_M
sum(GT.sch$ELMGEOM)
## [1] 4880
#There are 42,932 English learner males in Gifted and Talented in the US
# there are 4,880 English learner males in Gifted and Talented in California
#Total LEP Female in GT
#dat$ELFGT <- dat$SCH_GTENR_LEP_F
GT.sch$ELFGEOM <- GT.sch$SCH_GTENR_LEP_F
sum(GT.sch$ELFGEOM)
## [1] 3708
#There are 37,200 English learner females in Gifted and Talented in the US
#There are 3,708 English learner females in Gifted and Talented in California
#dat$ELEnrol <- dat$TOT_LEPENR_M + dat$TOT_LEPENR_F
GT.sch$ELEnrolGEOM <- GT.sch$ELMGEOM + GT.sch$ELFGEOM
els.GT <- sum(GT.sch$ELEnrolGEOM)
els.GT
## [1] 8588
#There are 80,132 English learners in Gifted and Talented
# There are 8,588 English learners in Gifted and Talented in California
# Computes the percentage of male English Learners at the school level who are enrolled in a G&T program
#dat$ELMGTPct<-round(dat$SCH_GTENR_LEP_M/dat$TOT_LEPENR_M*100,1)
GT.sch$ELMPct <- round(GT.sch$ELMGEOM/GT.sch$NonELM*100,1)
# Computes the percentage of female English Learners at the school level who are enrolled in a G&T program
#dat$ELFGTPct<-round(dat$SCH_GTENR_LEP_F/dat$TOT_LEPENR_F*100,1)
GT.sch$ELFPct <- round(GT.sch$ELFGEOM/GT.sch$NonELF*100,1)
#dat$NonELMGTPct<-round(dat$NonELMGT/dat$NonELM*100,1)
GT.sch$NonELMGEOMPct <- round(GT.sch$ELMGEOM/GT.sch$NonELM*100,1)
############################
#Percentage of English Learners (Number of ELs in GT / Number of English Learners Total K-12)
(els.GT)/num.k12.el.CA*100
## [1] 0.7172889
### 1.5% of all English Learners are enrolled in Gifted and Talented in the US
###0.71% of all English Learners are enrolled in Gifted and Talented in California!!!!!
######################
#Non English Learners in Gifted and Talented
## Percentage of Els in GT / All non-ELs in K-12
non.el.GT/(num.k12.non.el.CA)*100
## [1] 7.260514
non.el.GT
## [1] 370793
#There are 370,793 non-ELs in Gifted and Talented Programs in California out of 5,106,980 non-Els in California k-12
##7.12% of Non-Els are in GT in the USA
### 7.3% of non-ELs are in GT in California