filter Select Apple stock prices and save it under plotdata.In this exercise, use Chapter 4.2 Quantitative vs. Quantitative Data Visualization with R.
# Load packages
library(tidyquant)
library(tidyverse)
# Import stock prices
stock_prices <- tq_get(c("AAPL", "MSFT", "AMZN"), get = "stock.prices", from = "2021-01-01")
# Calculate daily returns
stock_returns <-
stock_prices %>%
group_by(symbol) %>%
tq_mutate(select = adjusted, mutate_fun = periodReturn, period = "daily")
stock_returns
## # A tibble: 123 x 9
## # Groups: symbol [3]
## symbol date open high low close volume adjusted daily.returns
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 2021-01-04 134. 134. 127. 129. 143301900 129. 0
## 2 AAPL 2021-01-05 129. 132. 128. 131. 97664900 131. 0.0124
## 3 AAPL 2021-01-06 128. 131. 126. 127. 155088000 126. -0.0337
## 4 AAPL 2021-01-07 128. 132. 128. 131. 109578200 131. 0.0341
## 5 AAPL 2021-01-08 132. 133. 130. 132. 105158200 132. 0.00863
## 6 AAPL 2021-01-11 129. 130. 128. 129. 100620900 129. -0.0232
## 7 AAPL 2021-01-12 128. 130. 127. 129. 91951100 129. -0.00140
## 8 AAPL 2021-01-13 129. 131. 128. 131. 88636800 131. 0.0162
## 9 AAPL 2021-01-14 131. 131 129. 129. 90221800 129. -0.0151
## 10 AAPL 2021-01-15 129. 130. 127 127. 111598500 127. -0.0137
## # … with 113 more rows
Hint: In your interpretation, make sure to use all variables. Row 2 of the data set is, the Groups and symbols for the variables which there are only 3 variables, being AAPL, MSFT and AMZN which all represent a different company, Apple, Microsfot and Amazon
filter Select Apple stock prices and save it under plotdata.Hint: See the code in 4.2.2 Line plot.
plotdata <- filter(stock_returns,
symbol == "AAPL")
plotdata
## # A tibble: 41 x 9
## # Groups: symbol [1]
## symbol date open high low close volume adjusted daily.returns
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 2021-01-04 134. 134. 127. 129. 143301900 129. 0
## 2 AAPL 2021-01-05 129. 132. 128. 131. 97664900 131. 0.0124
## 3 AAPL 2021-01-06 128. 131. 126. 127. 155088000 126. -0.0337
## 4 AAPL 2021-01-07 128. 132. 128. 131. 109578200 131. 0.0341
## 5 AAPL 2021-01-08 132. 133. 130. 132. 105158200 132. 0.00863
## 6 AAPL 2021-01-11 129. 130. 128. 129. 100620900 129. -0.0232
## 7 AAPL 2021-01-12 128. 130. 127. 129. 91951100 129. -0.00140
## 8 AAPL 2021-01-13 129. 131. 128. 131. 88636800 131. 0.0162
## 9 AAPL 2021-01-14 131. 131 129. 129. 90221800 129. -0.0151
## 10 AAPL 2021-01-15 129. 130. 127 127. 111598500 127. -0.0137
## # … with 31 more rows
Hint: See the code in 4.2.2 Line plot. Use plotdata you created in Q3.
ggplot(plotdata,
aes(x = date,
y = open)) +
geom_line()
Hint: Interpret the line plot you created in Q4. Apple stock prices hit a high for the year in late January and then began to slow fall over the next month to the lowest point in the year in late February. The in March, Apple began to rapidly increase and then shortly after that increase, it began to fall a similar amount that it just increased.
Hint: See the code in 4.3.1 Bar chart (on summary statistics).
library(dplyr)
plotdata <- stock_returns %>%
group_by(symbol) %>%
summarize(mean_dialy.returns = mean(daily.returns))
ggplot(plotdata,
aes(x = symbol,
y = mean_dialy.returns)) +
geom_bar(stat = "identity")
Hint: See the code in 4.3.1 Bar chart (on summary statistics). Use plotdata you created in Q5. I would except Microsoft to have the highest daily return because its data plot is positive. This means that it is stock daily return is increasing while compared to Apples and Amazons stocks that daily returns are going negitive from the stte of the year.
Hint: Refer to the RMarkdown Reference Guide.