Problem 10

This question should be answered using the Weekly data set, which is part of the ISLR package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.

library(ISLR)
attach(Weekly)

(a) Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume            Today         
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747   Min.   :-18.1950  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202   1st Qu.: -1.1540  
##  Median :  0.2380   Median :  0.2340   Median :1.00268   Median :  0.2410  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462   Mean   :  0.1499  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373   3rd Qu.:  1.4050  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821   Max.   : 12.0260  
##  Direction 
##  Down:484  
##  Up  :605  
##            
##            
##            
## 
pairs(Weekly)

cor(Weekly[,-9])
##               Year         Lag1        Lag2        Lag3         Lag4
## Year    1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1   -0.03228927  1.000000000 -0.07485305  0.05863568 -0.071273876
## Lag2   -0.03339001 -0.074853051  1.00000000 -0.07572091  0.058381535
## Lag3   -0.03000649  0.058635682 -0.07572091  1.00000000 -0.075395865
## Lag4   -0.03112792 -0.071273876  0.05838153 -0.07539587  1.000000000
## Lag5   -0.03051910 -0.008183096 -0.07249948  0.06065717 -0.075675027
## Volume  0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today  -0.03245989 -0.075031842  0.05916672 -0.07124364 -0.007825873
##                Lag5      Volume        Today
## Year   -0.030519101  0.84194162 -0.032459894
## Lag1   -0.008183096 -0.06495131 -0.075031842
## Lag2   -0.072499482 -0.08551314  0.059166717
## Lag3    0.060657175 -0.06928771 -0.071243639
## Lag4   -0.075675027 -0.06107462 -0.007825873
## Lag5    1.000000000 -0.05851741  0.011012698
## Volume -0.058517414  1.00000000 -0.033077783
## Today   0.011012698 -0.03307778  1.000000000
plot(Volume)

(b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?

glm.fits<-glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume, data=Weekly, family=binomial)
summary(glm.fits)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = binomial, data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

We can notice that predictor Lag2(0.0296<0.05) is the only significant predictor.

(c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

glm.probs=predict(glm.fits, type = "response")
contrasts(Direction)
##      Up
## Down  0
## Up    1
glm.pred=rep("Down",1089)
glm.pred[glm.probs > .5] = "Up"
table(glm.pred ,Direction)
##         Direction
## glm.pred Down  Up
##     Down   54  48
##     Up    430 557
(54+557)/1089
## [1] 0.5610652
mean(glm.pred==Direction)
## [1] 0.5610652
54/(54+430)
## [1] 0.1115702
557/(557+48)
## [1] 0.9206612

The diagonal elements of the confusion matrix indicate correct predictions, while the off-diagonals represent incorrect predictions. Our overall fraction of correct prediction is 611/1089= .5610652. For Down the fraction of correct prediction is .1115702 and for Up the fraction of correct prediction is .9206612

(d) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).

train=(Year<2009)
Weekly.2009= Weekly[!train,]
Direction.2009= Direction[!train]
dim(Weekly.2009)
## [1] 104   9
Direction.2009= Direction[!train]
glm.fits=glm(Direction~Lag2, data=Weekly, family=binomial ,subset=train)
glm.probs=predict (glm.fits,Weekly.2009, type="response")
glm.pred=rep('Down',104)
glm.pred[glm.probs >.5]= 'Up'
table(glm.pred ,Direction.2009)
##         Direction.2009
## glm.pred Down Up
##     Down    9  5
##     Up     34 56
mean(glm.pred==Direction.2009)
## [1] 0.625

Using Lag 2 as our only predictor, we get fraction of correct prediction of 0.625. We can notice it is greater than the last test data.

(e) Repeat (d) using LDA.

library(MASS)
lda.fit=lda(Direction~Lag2 ,data= `Weekly` ,subset=train)
lda.fit
## Call:
## lda(Direction ~ Lag2, data = Weekly, subset = train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##             Lag2
## Down -0.03568254
## Up    0.26036581
## 
## Coefficients of linear discriminants:
##            LD1
## Lag2 0.4414162
plot(lda.fit)

lda.pred=predict (lda.fit , Weekly.2009)
names(lda.pred)
## [1] "class"     "posterior" "x"
lda.class=lda.pred$class
table(lda.class ,Direction.2009)
##          Direction.2009
## lda.class Down Up
##      Down    9  5
##      Up     34 56
mean(lda.class==Direction.2009)
## [1] 0.625

By looking at the result we can see that we get same fraction of correct prediction as when we did with logistic regression.

(f) Repeat (d) using QDA.

qda.fit=qda(Direction~Lag2 ,data=Weekly ,subset=train)
qda.fit
## Call:
## qda(Direction ~ Lag2, data = Weekly, subset = train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##             Lag2
## Down -0.03568254
## Up    0.26036581
qda.class=predict(qda.fit ,Weekly.2009)$class
table(qda.class ,Direction.2009)
##          Direction.2009
## qda.class Down Up
##      Down    0  0
##      Up     43 61
mean(qda.class==Direction.2009)
## [1] 0.5865385

The fraction of correct prediction this was .5865385. I noticed that in qda only had Up variable.

(g) Repeat (d) using KNN with K = 1.

library(class)
train.X=as.matrix(Lag2[train])
test.X=as.matrix(Lag2[!train])
train.Direction=Direction[train]
dim(train.X)
## [1] 985   1
dim(test.X)
## [1] 104   1
dim(train.Direction)
## NULL
length(train.Direction)
## [1] 985
set.seed(1)
knn.pred=knn(train.X,test.X,train.Direction ,k=1)
table(knn.pred ,Direction.2009)
##         Direction.2009
## knn.pred Down Up
##     Down   21 30
##     Up     22 31
mean(knn.pred==Direction.2009)
## [1] 0.5

In our prediction using KNN with K = 1. We get fraction of correct prediction of 0.5.
(h) Which of these methods appears to provide the best results on this data?
We can notice that logistic regression model and LDA model has highest fraction of correct prediction with 0.625.

(i) Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.

glm.fit2=glm(Direction~Lag1*Lag2, data=Weekly, family=binomial)
glm.probs=predict(glm.fit2, Weekly.2009, type='response')
glm.pred=rep('Down', 104)
glm.pred[glm.probs>0.5]='Up'
table(glm.pred, Direction.2009)
##         Direction.2009
## glm.pred Down Up
##     Down    5  6
##     Up     38 55
mean(glm.pred==Direction.2009)
## [1] 0.5769231

This is the correct prediction of Lag1 and Lag2 using logistic regression

glm.fit3=glm(Direction~(sqrt(Lag2)), data=Weekly, family=binomial)
glm.probs=predict(glm.fit3, Weekly.2009, type='response')
glm.pred=rep('Down', 104)
glm.pred[glm.probs>0.5]='Up'
table(glm.pred, Direction.2009)
##         Direction.2009
## glm.pred Down Up
##     Down   21 28
##     Up     22 33
mean(glm.pred==Direction.2009)
## [1] 0.5192308

This is the correct prediction of square root of Lag2 using logistic regression

glm.fit4=glm(Direction~Lag1+I(Lag2^2), data=Weekly, family=binomial)
glm.probs=predict(glm.fit4, Weekly.2009, type='response')
glm.pred=rep('Down', 104)
glm.pred[glm.probs>0.5]='Up'
table(glm.pred, Direction.2009)
##         Direction.2009
## glm.pred Down Up
##     Down    3  3
##     Up     40 58
mean(glm.pred==Direction.2009)
## [1] 0.5865385

This is the correct prediction of Lag1 and Lag2^2 using logistic regression

lda.fit2=lda(Direction~Lag1 + I(Lag2^2), data = Weekly, subset = train)
lda.fit2
## Call:
## lda(Direction ~ Lag1 + I(Lag2^2), data = Weekly, subset = train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##              Lag1 I(Lag2^2)
## Down  0.289444444  4.828121
## Up   -0.009213235  5.428657
## 
## Coefficients of linear discriminants:
##                   LD1
## Lag1      -0.42334484
## I(Lag2^2)  0.02078431
lda.pred2=predict(lda.fit2, Weekly.2009)
lda.class2=lda.pred2$class
table(lda.class2, Direction.2009)
##           Direction.2009
## lda.class2 Down Up
##       Down    6  6
##       Up     37 55
mean(lda.class2==Direction.2009)
## [1] 0.5865385

This is the fraction of correct prediction of Lag1 and Lag2^2 using LDA

qda.fit2=qda(Direction~Lag1 + I(Lag2^2), data = Weekly, subset = train)
qda.fit2
## Call:
## qda(Direction ~ Lag1 + I(Lag2^2), data = Weekly, subset = train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##              Lag1 I(Lag2^2)
## Down  0.289444444  4.828121
## Up   -0.009213235  5.428657
qda.pred=predict(qda.fit2, Weekly.2009)
qda.class=qda.pred$class
table(qda.class, Direction.2009)
##          Direction.2009
## qda.class Down Up
##      Down    4  6
##      Up     39 55
mean(qda.class==Direction.2009)
## [1] 0.5673077
set.seed(1)
knn.pred=knn(train.X, test.X, train.Direction, k=3)
table(knn.pred, Direction.2009)
##         Direction.2009
## knn.pred Down Up
##     Down   16 20
##     Up     27 41
mean(knn.pred==Direction.2009)
## [1] 0.5480769

This is fraction of correct prediction using KNN with k = 3

set.seed(1)
knn.pred=knn(train.X, test.X, train.Direction, k=5)
table(knn.pred, Direction.2009)
##         Direction.2009
## knn.pred Down Up
##     Down   16 21
##     Up     27 40
mean(knn.pred==Direction.2009)
## [1] 0.5384615

This is fraction of correct prediction using KNN with K = 5

Using different values and different methods, lda and logistic regression of Lag1 and Lag2^2 has the greatest correct prediction.

Problem 11

In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

library(ISLR)
attach(Auto)

(a) Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.

summary(Auto)
##       mpg          cylinders      displacement     horsepower        weight    
##  Min.   : 9.00   Min.   :3.000   Min.   : 68.0   Min.   : 46.0   Min.   :1613  
##  1st Qu.:17.00   1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 75.0   1st Qu.:2225  
##  Median :22.75   Median :4.000   Median :151.0   Median : 93.5   Median :2804  
##  Mean   :23.45   Mean   :5.472   Mean   :194.4   Mean   :104.5   Mean   :2978  
##  3rd Qu.:29.00   3rd Qu.:8.000   3rd Qu.:275.8   3rd Qu.:126.0   3rd Qu.:3615  
##  Max.   :46.60   Max.   :8.000   Max.   :455.0   Max.   :230.0   Max.   :5140  
##                                                                                
##   acceleration        year           origin                      name    
##  Min.   : 8.00   Min.   :70.00   Min.   :1.000   amc matador       :  5  
##  1st Qu.:13.78   1st Qu.:73.00   1st Qu.:1.000   ford pinto        :  5  
##  Median :15.50   Median :76.00   Median :1.000   toyota corolla    :  5  
##  Mean   :15.54   Mean   :75.98   Mean   :1.577   amc gremlin       :  4  
##  3rd Qu.:17.02   3rd Qu.:79.00   3rd Qu.:2.000   amc hornet        :  4  
##  Max.   :24.80   Max.   :82.00   Max.   :3.000   chevrolet chevette:  4  
##                                                  (Other)           :365
mpg01=rep(0, length(mpg))
mpg01[mpg > median(mpg)] = 1
Auto2 = data.frame(Auto, mpg01)
summary(Auto2)
##       mpg          cylinders      displacement     horsepower        weight    
##  Min.   : 9.00   Min.   :3.000   Min.   : 68.0   Min.   : 46.0   Min.   :1613  
##  1st Qu.:17.00   1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 75.0   1st Qu.:2225  
##  Median :22.75   Median :4.000   Median :151.0   Median : 93.5   Median :2804  
##  Mean   :23.45   Mean   :5.472   Mean   :194.4   Mean   :104.5   Mean   :2978  
##  3rd Qu.:29.00   3rd Qu.:8.000   3rd Qu.:275.8   3rd Qu.:126.0   3rd Qu.:3615  
##  Max.   :46.60   Max.   :8.000   Max.   :455.0   Max.   :230.0   Max.   :5140  
##                                                                                
##   acceleration        year           origin                      name    
##  Min.   : 8.00   Min.   :70.00   Min.   :1.000   amc matador       :  5  
##  1st Qu.:13.78   1st Qu.:73.00   1st Qu.:1.000   ford pinto        :  5  
##  Median :15.50   Median :76.00   Median :1.000   toyota corolla    :  5  
##  Mean   :15.54   Mean   :75.98   Mean   :1.577   amc gremlin       :  4  
##  3rd Qu.:17.02   3rd Qu.:79.00   3rd Qu.:2.000   amc hornet        :  4  
##  Max.   :24.80   Max.   :82.00   Max.   :3.000   chevrolet chevette:  4  
##                                                  (Other)           :365  
##      mpg01    
##  Min.   :0.0  
##  1st Qu.:0.0  
##  Median :0.5  
##  Mean   :0.5  
##  3rd Qu.:1.0  
##  Max.   :1.0  
## 

(b) Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.

pairs(Auto2[,-9])

cor(Auto2[,-9])
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
## mpg01         0.8369392 -0.7591939   -0.7534766 -0.6670526 -0.7577566
##              acceleration       year     origin      mpg01
## mpg             0.4233285  0.5805410  0.5652088  0.8369392
## cylinders      -0.5046834 -0.3456474 -0.5689316 -0.7591939
## displacement   -0.5438005 -0.3698552 -0.6145351 -0.7534766
## horsepower     -0.6891955 -0.4163615 -0.4551715 -0.6670526
## weight         -0.4168392 -0.3091199 -0.5850054 -0.7577566
## acceleration    1.0000000  0.2903161  0.2127458  0.3468215
## year            0.2903161  1.0000000  0.1815277  0.4299042
## origin          0.2127458  0.1815277  1.0000000  0.5136984
## mpg01           0.3468215  0.4299042  0.5136984  1.0000000
par(mfrow=c(2,2))
boxplot(cylinders~mpg01)
boxplot(displacement~mpg01)
boxplot(horsepower~mpg01)
boxplot(weight~mpg01)

pairs() graph would not be helpful because the mpg01 variable only consists of 0 and 1. Looking at correlation those with negative correlation cylinders, displacement, horsepower, weight would be the useful predictor.

(c) Split the data into a training set and a test set.

set.seed(1)
Train=sample(1:nrow(Auto2), nrow(Auto2)*0.7)
training = Auto2[Train, -1]  
summary(training)
##    cylinders      displacement     horsepower        weight      acceleration  
##  Min.   :3.000   Min.   : 68.0   Min.   : 46.0   Min.   :1649   Min.   : 8.00  
##  1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 78.0   1st Qu.:2224   1st Qu.:14.00  
##  Median :4.000   Median :151.0   Median : 93.5   Median :2790   Median :15.50  
##  Mean   :5.464   Mean   :193.2   Mean   :103.8   Mean   :2967   Mean   :15.66  
##  3rd Qu.:8.000   3rd Qu.:261.5   3rd Qu.:123.8   3rd Qu.:3612   3rd Qu.:17.27  
##  Max.   :8.000   Max.   :455.0   Max.   :230.0   Max.   :5140   Max.   :24.80  
##                                                                                
##       year           origin                            name    
##  Min.   :70.00   Min.   :1.00   amc gremlin              :  4  
##  1st Qu.:73.00   1st Qu.:1.00   amc hornet               :  4  
##  Median :76.00   Median :1.00   amc matador              :  3  
##  Mean   :76.06   Mean   :1.54   chevrolet caprice classic:  3  
##  3rd Qu.:79.00   3rd Qu.:2.00   chevrolet chevette       :  3  
##  Max.   :82.00   Max.   :3.00   chevrolet impala         :  3  
##                                 (Other)                  :254  
##      mpg01       
##  Min.   :0.0000  
##  1st Qu.:0.0000  
##  Median :1.0000  
##  Mean   :0.5073  
##  3rd Qu.:1.0000  
##  Max.   :1.0000  
## 
dim(training)
## [1] 274   9
testing = Auto2[-Train, -1]
dim(testing)
## [1] 118   9
dim(Auto2)
## [1] 392  10
test.mpg01=mpg01[-Train]
train.mpg01=mpg01[Train]
length(test.mpg01)
## [1] 118
length(train.mpg01)
## [1] 274

(d) Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

library(MASS)
lda.fit=lda(mpg01~cylinders+displacement+horsepower+weight, data = Auto2, subset=Train)
lda.fit
## Call:
## lda(mpg01 ~ cylinders + displacement + horsepower + weight, data = Auto2, 
##     subset = Train)
## 
## Prior probabilities of groups:
##         0         1 
## 0.4927007 0.5072993 
## 
## Group means:
##   cylinders displacement horsepower   weight
## 0  6.777778     271.9333  129.13333 3611.052
## 1  4.187050     116.8129   79.27338 2342.165
## 
## Coefficients of linear discriminants:
##                        LD1
## cylinders    -0.3962357999
## displacement -0.0047630097
## horsepower    0.0061919395
## weight       -0.0008321338
plot(lda.fit)

lda.pred=predict(lda.fit, testing)
names(lda.pred)
## [1] "class"     "posterior" "x"
lda.class=lda.pred$class
table(lda.class, test.mpg01)
##          test.mpg01
## lda.class  0  1
##         0 50  3
##         1 11 54
mean(lda.class==test.mpg01)
## [1] 0.8813559
1-0.8813559
## [1] 0.1186441

Using LDA method we get test error of the model of 0.1186441.

(e) Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

qda.fit=qda(mpg01~cylinders+displacement+horsepower+weight, data = Auto2, subset=Train)
qda.fit
## Call:
## qda(mpg01 ~ cylinders + displacement + horsepower + weight, data = Auto2, 
##     subset = Train)
## 
## Prior probabilities of groups:
##         0         1 
## 0.4927007 0.5072993 
## 
## Group means:
##   cylinders displacement horsepower   weight
## 0  6.777778     271.9333  129.13333 3611.052
## 1  4.187050     116.8129   79.27338 2342.165
qda.pred=predict(qda.fit, testing)
qda.class=qda.pred$class
table(qda.class, test.mpg01)
##          test.mpg01
## qda.class  0  1
##         0 52  5
##         1  9 52
mean(qda.class==test.mpg01)
## [1] 0.8813559
1-0.8813559
## [1] 0.1186441

Using the QDA method we can see that test error of the model is 0.1186441

(f) Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

glm.fits=glm(mpg01~cylinders + displacement + horsepower + weight, data = Auto2, subset=Train, family=binomial)
glm.probs=predict(glm.fits, testing, type='response')
glm.pred=rep(0,length(glm.probs))
glm.pred[glm.probs>0.5]=1
table(glm.pred, test.mpg01)
##         test.mpg01
## glm.pred  0  1
##        0 53  3
##        1  8 54
mean(glm.pred==test.mpg01) 
## [1] 0.9067797
1-0.9067796
## [1] 0.0932204

Using logistic regression on the training data, the test error of the model is 0.0932204

(g) Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?

library(class)
train.X=cbind(training$cylinders, training$weight, training$displacement, training$horsepower)
test.X=cbind(testing$cylinders, testing$weight, testing$displacement, testing$horsepower)
knn.pred=knn(train.X, test.X, train.mpg01, k=1)
mean(knn.pred==test.mpg01)
## [1] 0.8644068
knn.pred=knn(train.X, test.X, train.mpg01, k=3)
mean(knn.pred==test.mpg01)
## [1] 0.8898305
knn.pred=knn(train.X, test.X, train.mpg01, k=5)
mean(knn.pred==test.mpg01)
## [1] 0.8728814
knn.pred=knn(train.X, test.X, train.mpg01, k=10)
mean(knn.pred==test.mpg01)
## [1] 0.8559322
1-0.8898305
## [1] 0.1101695

Using the KNN prediction, K=3 seems to perform best, which gives us lowest test error value of 0.1101695

Problem 13

Using the Boston data set, fit classification models in order to predict whether a given suburb has a crime rate above or below the median. Explore logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your findings.

library(MASS)
attach(Boston)
summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
cor(Boston)
##                crim          zn       indus         chas         nox
## crim     1.00000000 -0.20046922  0.40658341 -0.055891582  0.42097171
## zn      -0.20046922  1.00000000 -0.53382819 -0.042696719 -0.51660371
## indus    0.40658341 -0.53382819  1.00000000  0.062938027  0.76365145
## chas    -0.05589158 -0.04269672  0.06293803  1.000000000  0.09120281
## nox      0.42097171 -0.51660371  0.76365145  0.091202807  1.00000000
## rm      -0.21924670  0.31199059 -0.39167585  0.091251225 -0.30218819
## age      0.35273425 -0.56953734  0.64477851  0.086517774  0.73147010
## dis     -0.37967009  0.66440822 -0.70802699 -0.099175780 -0.76923011
## rad      0.62550515 -0.31194783  0.59512927 -0.007368241  0.61144056
## tax      0.58276431 -0.31456332  0.72076018 -0.035586518  0.66802320
## ptratio  0.28994558 -0.39167855  0.38324756 -0.121515174  0.18893268
## black   -0.38506394  0.17552032 -0.35697654  0.048788485 -0.38005064
## lstat    0.45562148 -0.41299457  0.60379972 -0.053929298  0.59087892
## medv    -0.38830461  0.36044534 -0.48372516  0.175260177 -0.42732077
##                  rm         age         dis          rad         tax    ptratio
## crim    -0.21924670  0.35273425 -0.37967009  0.625505145  0.58276431  0.2899456
## zn       0.31199059 -0.56953734  0.66440822 -0.311947826 -0.31456332 -0.3916785
## indus   -0.39167585  0.64477851 -0.70802699  0.595129275  0.72076018  0.3832476
## chas     0.09125123  0.08651777 -0.09917578 -0.007368241 -0.03558652 -0.1215152
## nox     -0.30218819  0.73147010 -0.76923011  0.611440563  0.66802320  0.1889327
## rm       1.00000000 -0.24026493  0.20524621 -0.209846668 -0.29204783 -0.3555015
## age     -0.24026493  1.00000000 -0.74788054  0.456022452  0.50645559  0.2615150
## dis      0.20524621 -0.74788054  1.00000000 -0.494587930 -0.53443158 -0.2324705
## rad     -0.20984667  0.45602245 -0.49458793  1.000000000  0.91022819  0.4647412
## tax     -0.29204783  0.50645559 -0.53443158  0.910228189  1.00000000  0.4608530
## ptratio -0.35550149  0.26151501 -0.23247054  0.464741179  0.46085304  1.0000000
## black    0.12806864 -0.27353398  0.29151167 -0.444412816 -0.44180801 -0.1773833
## lstat   -0.61380827  0.60233853 -0.49699583  0.488676335  0.54399341  0.3740443
## medv     0.69535995 -0.37695457  0.24992873 -0.381626231 -0.46853593 -0.5077867
##               black      lstat       medv
## crim    -0.38506394  0.4556215 -0.3883046
## zn       0.17552032 -0.4129946  0.3604453
## indus   -0.35697654  0.6037997 -0.4837252
## chas     0.04878848 -0.0539293  0.1752602
## nox     -0.38005064  0.5908789 -0.4273208
## rm       0.12806864 -0.6138083  0.6953599
## age     -0.27353398  0.6023385 -0.3769546
## dis      0.29151167 -0.4969958  0.2499287
## rad     -0.44441282  0.4886763 -0.3816262
## tax     -0.44180801  0.5439934 -0.4685359
## ptratio -0.17738330  0.3740443 -0.5077867
## black    1.00000000 -0.3660869  0.3334608
## lstat   -0.36608690  1.0000000 -0.7376627
## medv     0.33346082 -0.7376627  1.0000000
attach(Boston)
crim_1=rep(0, length(crim))
crim_1[crim>median(crim)]=1
Boston1 = data.frame(Boston, crim_1)
summary(Boston1)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv           crim_1   
##  Min.   : 1.73   Min.   : 5.00   Min.   :0.0  
##  1st Qu.: 6.95   1st Qu.:17.02   1st Qu.:0.0  
##  Median :11.36   Median :21.20   Median :0.5  
##  Mean   :12.65   Mean   :22.53   Mean   :0.5  
##  3rd Qu.:16.95   3rd Qu.:25.00   3rd Qu.:1.0  
##  Max.   :37.97   Max.   :50.00   Max.   :1.0
set.seed(1)
train = sample(1:nrow(Boston1), 0.7*nrow(Boston1))
Boston1.train = Boston1[train,]
Boston1.test = Boston1[-train,]
dim(Boston1.train)
## [1] 354  15
crim_1.test=crim_1[-train]
crim_1.test
##   [1] 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [38] 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0
##  [75] 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1
## [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
## [149] 1 0 0 0
glm.fit=glm(crim_1~zn+indus+chas+nox+rm+age+dis+rad+tax+ptratio+black+lstat+medv, data=Boston1, subset=train, family=binomial)
summary(glm.fit)
## 
## Call:
## glm(formula = crim_1 ~ zn + indus + chas + nox + rm + age + dis + 
##     rad + tax + ptratio + black + lstat + medv, family = binomial, 
##     data = Boston1, subset = train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1363  -0.1504  -0.0009   0.0018   3.5797  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -42.731502   8.009551  -5.335 9.55e-08 ***
## zn           -0.105323   0.045585  -2.310 0.020862 *  
## indus        -0.066308   0.057649  -1.150 0.250057    
## chas          0.187896   0.810675   0.232 0.816711    
## nox          56.344292  10.073420   5.593 2.23e-08 ***
## rm           -0.234402   0.900292  -0.260 0.794585    
## age           0.022052   0.014304   1.542 0.123141    
## dis           1.143918   0.303909   3.764 0.000167 ***
## rad           0.657976   0.184373   3.569 0.000359 ***
## tax          -0.006299   0.003239  -1.944 0.051849 .  
## ptratio       0.292158   0.155755   1.876 0.060689 .  
## black        -0.008703   0.005212  -1.670 0.094933 .  
## lstat         0.112414   0.060168   1.868 0.061715 .  
## medv          0.191745   0.087816   2.184 0.028999 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 490.65  on 353  degrees of freedom
## Residual deviance: 140.41  on 340  degrees of freedom
## AIC: 168.41
## 
## Number of Fisher Scoring iterations: 9
glm.fit2=glm(crim_1~ zn+nox+dis+rad+medv, data=Boston1, subset=train, family=binomial)
summary(glm.fit2)
## 
## Call:
## glm(formula = crim_1 ~ zn + nox + dis + rad + medv, family = binomial, 
##     data = Boston1, subset = train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0766  -0.3226  -0.0034   0.0069   3.2715  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -30.10487    4.91615  -6.124 9.14e-10 ***
## zn           -0.09780    0.03537  -2.765 0.005698 ** 
## nox          42.65837    7.07436   6.030 1.64e-09 ***
## dis           0.84586    0.23756   3.561 0.000370 ***
## rad           0.49353    0.13194   3.741 0.000184 ***
## medv          0.08028    0.02906   2.763 0.005730 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 490.65  on 353  degrees of freedom
## Residual deviance: 164.99  on 348  degrees of freedom
## AIC: 176.99
## 
## Number of Fisher Scoring iterations: 8
glm.probs=predict(glm.fit2, Boston1.test, type='response')
glm.pred=rep(0, length(glm.probs))
glm.pred[glm.probs > 0.5] = 1  
table(glm.pred, crim_1.test)
##         crim_1.test
## glm.pred  0  1
##        0 60 11
##        1 13 68
mean(glm.pred == crim_1.test)
## [1] 0.8421053
lda.fit=lda(crim_1~zn+nox+dis+rad+medv, data=Boston1, subset=train)
lda.pred = predict(lda.fit, Boston1.test)
names(lda.pred)
## [1] "class"     "posterior" "x"
lda.class=lda.pred$class
table(lda.class, crim_1.test)
##          crim_1.test
## lda.class  0  1
##         0 71 19
##         1  2 60
mean(lda.class == crim_1.test)
## [1] 0.8618421
qda.fit=qda(crim_1~zn+nox+dis+rad+medv, data=Boston1, subset=train)
qda.pred = predict(qda.fit, Boston1.test)
names(qda.pred)
## [1] "class"     "posterior"
qda.class=qda.pred$class
table(qda.class, crim_1.test)
##          crim_1.test
## qda.class  0  1
##         0 66 15
##         1  7 64
mean(qda.class== crim_1.test)
## [1] 0.8552632
library(class)
train.X=cbind(nox,rad,ptratio,medv)[train,]
test.X=cbind(nox,rad,ptratio,medv)[-train,]
train.crim_1 = crim_1[train]
dim(train.X)
## [1] 354   4
dim(test.X)
## [1] 152   4
dim(train.crim_1)
## NULL
knn.pred=knn(train.X, test.X, train.crim_1, k=1)
table(knn.pred, crim_1.test)
##         crim_1.test
## knn.pred  0  1
##        0 57  6
##        1 16 73
mean(knn.pred== crim_1.test)
## [1] 0.8552632
knn.pred=knn(train.X, test.X, train.crim_1, k=3)
table(knn.pred, crim_1.test)
##         crim_1.test
## knn.pred  0  1
##        0 59 11
##        1 14 68
mean(knn.pred== crim_1.test)
## [1] 0.8355263
knn.pred=knn(train.X, test.X, train.crim_1, k=5)
table(knn.pred, crim_1.test)
##         crim_1.test
## knn.pred  0  1
##        0 61 12
##        1 12 67
mean(knn.pred== crim_1.test)
## [1] 0.8421053
knn.pred=knn(train.X, test.X, train.crim_1, k=10)
table(knn.pred, crim_1.test)
##         crim_1.test
## knn.pred  0  1
##        0 66 21
##        1  7 58
mean(knn.pred== crim_1.test)
## [1] 0.8157895
knn.pred=knn(train.X, test.X, train.crim_1, k=100)
table(knn.pred, crim_1.test)
##         crim_1.test
## knn.pred  0  1
##        0 73 39
##        1  0 40
mean(knn.pred== crim_1.test)
## [1] 0.7434211

I see that LDA has the highest fraction of correct prediction value.