This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.
Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.
t <- proc.time()
# For manipulating the datasets
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(readr)
library(readxl)
# For plotting correlation matrix
library(ggcorrplot)
## Loading required package: ggplot2
# Machine Learning library
library(caret)
## Loading required package: lattice
library(catboost)
# For Multi-core processing support
library(parallel)
library(doParallel)
## Loading required package: foreach
## Loading required package: iterators
cl <- makePSOCKcluster(2)
registerDoParallel(cl)
#Numerical dataset
dataset_num <- read_excel("rice.xlsx")
#Categorical dataset
dataset_cat <- read.csv("mushrooms.csv")
#Mix dataset
dataset_mix <- read_excel("bank.xlsx")
dataset_cat %>% group_by(VEIL.TYPE) %>% summarise(total=n())
## `summarise()` ungrouping output (override with `.groups` argument)
#Eliminate VEIL.TYPE since it only has one value
dataset_cat <- dataset_cat %>% select(-VEIL.TYPE)
dataset_cat %>% group_by(STALK.ROOT) %>% summarise(total=n())
## `summarise()` ungrouping output (override with `.groups` argument)
#Eliminate STALK.ROOT since it has missing values
dataset_cat <- dataset_cat %>% select(-STALK.ROOT)
dataset_num$CLASS <- as.factor(dataset_num$CLASS)
dataset_cat <- mutate_if(dataset_cat, is.character, as.factor)
dataset_mix <- mutate_if(dataset_mix, is.character, as.factor)
#CATBOOST
catboost_function <- function(dataset){
#Split train and test
trainIndex <- createDataPartition(dataset$CLASS, p=0.80, list=FALSE)
data_train <- dataset[ trainIndex,]
data_test <- dataset[-trainIndex,]
#Train the model
fitControl <- trainControl(method="repeatedcv",
repeats = 2,
number = 5,
returnResamp = 'final',
savePredictions = 'final',
verboseIter = T,
allowParallel = T)
catboost_model <- train(
x = data_train[,!(names(data_train) %in% c("CLASS"))],
y = data_train$CLASS,
method = catboost.caret,
trControl = fitControl)
catboost_model
#Predict results
catboost_predictions=predict(catboost_model,data_test)
confusionMatrix(catboost_predictions,as.factor(data_test$CLASS))
}
#RANDOM FOREST
rf_function <- function(dataset){
#Split train and test
trainIndex <- createDataPartition(dataset$CLASS, p=0.80, list=FALSE)
data_train <- dataset[ trainIndex,]
data_test <- dataset[-trainIndex,]
#Train the model
fitControl <- trainControl(method="repeatedcv",
repeats = 2,
number = 5,
returnResamp = 'final',
savePredictions = 'final',
verboseIter = T,
allowParallel = T)
train_formula<-formula(CLASS~.)
rf_model <- train(train_formula,
data = data_train,
method = "rf",
trControl = fitControl)
rf_model
#Predict results
rf_predictions=predict(rf_model,data_test)
confusionMatrix(rf_predictions,as.factor(data_test$CLASS))
}
#EXECUTE CATBOOST AND RANDOMFOREST IN EACH DATASET
##Numerical Dataset
#Start time
t1 <- proc.time()
catboost_function(dataset_num)
## Warning: The `i` argument of ``[`()` can't be a matrix as of tibble 3.0.0.
## Convert to a vector.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
## Aggregating results
## Selecting tuning parameters
## Fitting depth = 6, learning_rate = 0.0498, iterations = 100, l2_leaf_reg = 1e-06, rsm = 0.9, border_count = 255 on full training set
## Warning: Setting row names on a tibble is deprecated.
## 0: learn: 0.6565769 total: 149ms remaining: 14.7s
## 1: learn: 0.6233721 total: 153ms remaining: 7.49s
## 2: learn: 0.5926802 total: 156ms remaining: 5.06s
## 3: learn: 0.5651742 total: 160ms remaining: 3.83s
## 4: learn: 0.5393602 total: 164ms remaining: 3.11s
## 5: learn: 0.5160615 total: 167ms remaining: 2.62s
## 6: learn: 0.4946913 total: 170ms remaining: 2.26s
## 7: learn: 0.4751261 total: 173ms remaining: 1.99s
## 8: learn: 0.4565163 total: 176ms remaining: 1.78s
## 9: learn: 0.4391522 total: 179ms remaining: 1.61s
## 10: learn: 0.4231026 total: 182ms remaining: 1.48s
## 11: learn: 0.4082204 total: 186ms remaining: 1.36s
## 12: learn: 0.3948492 total: 189ms remaining: 1.26s
## 13: learn: 0.3821495 total: 192ms remaining: 1.18s
## 14: learn: 0.3704653 total: 195ms remaining: 1.1s
## 15: learn: 0.3590292 total: 198ms remaining: 1.04s
## 16: learn: 0.3484852 total: 201ms remaining: 982ms
## 17: learn: 0.3387822 total: 204ms remaining: 930ms
## 18: learn: 0.3296860 total: 207ms remaining: 884ms
## 19: learn: 0.3211705 total: 210ms remaining: 842ms
## 20: learn: 0.3131427 total: 213ms remaining: 802ms
## 21: learn: 0.3053956 total: 216ms remaining: 767ms
## 22: learn: 0.2980851 total: 219ms remaining: 735ms
## 23: learn: 0.2917024 total: 222ms remaining: 704ms
## 24: learn: 0.2854329 total: 225ms remaining: 676ms
## 25: learn: 0.2795508 total: 230ms remaining: 655ms
## 26: learn: 0.2739456 total: 233ms remaining: 631ms
## 27: learn: 0.2690711 total: 237ms remaining: 609ms
## 28: learn: 0.2639438 total: 240ms remaining: 587ms
## 29: learn: 0.2591860 total: 243ms remaining: 566ms
## 30: learn: 0.2546290 total: 246ms remaining: 547ms
## 31: learn: 0.2505347 total: 249ms remaining: 529ms
## 32: learn: 0.2467858 total: 252ms remaining: 512ms
## 33: learn: 0.2430415 total: 255ms remaining: 495ms
## 34: learn: 0.2394067 total: 258ms remaining: 480ms
## 35: learn: 0.2360497 total: 261ms remaining: 464ms
## 36: learn: 0.2330366 total: 264ms remaining: 450ms
## 37: learn: 0.2297277 total: 268ms remaining: 437ms
## 38: learn: 0.2266661 total: 271ms remaining: 423ms
## 39: learn: 0.2237936 total: 274ms remaining: 410ms
## 40: learn: 0.2211592 total: 277ms remaining: 398ms
## 41: learn: 0.2185949 total: 279ms remaining: 386ms
## 42: learn: 0.2160258 total: 283ms remaining: 375ms
## 43: learn: 0.2136687 total: 286ms remaining: 364ms
## 44: learn: 0.2114214 total: 289ms remaining: 353ms
## 45: learn: 0.2092412 total: 292ms remaining: 343ms
## 46: learn: 0.2072914 total: 295ms remaining: 333ms
## 47: learn: 0.2055936 total: 299ms remaining: 324ms
## 48: learn: 0.2038581 total: 303ms remaining: 315ms
## 49: learn: 0.2021939 total: 305ms remaining: 305ms
## 50: learn: 0.2006988 total: 309ms remaining: 297ms
## 51: learn: 0.1991199 total: 312ms remaining: 288ms
## 52: learn: 0.1978599 total: 315ms remaining: 279ms
## 53: learn: 0.1965361 total: 318ms remaining: 271ms
## 54: learn: 0.1952260 total: 321ms remaining: 263ms
## 55: learn: 0.1940856 total: 325ms remaining: 255ms
## 56: learn: 0.1925847 total: 328ms remaining: 247ms
## 57: learn: 0.1915455 total: 331ms remaining: 240ms
## 58: learn: 0.1904831 total: 334ms remaining: 232ms
## 59: learn: 0.1893805 total: 337ms remaining: 225ms
## 60: learn: 0.1884513 total: 340ms remaining: 217ms
## 61: learn: 0.1873141 total: 343ms remaining: 210ms
## 62: learn: 0.1865668 total: 346ms remaining: 203ms
## 63: learn: 0.1857137 total: 349ms remaining: 196ms
## 64: learn: 0.1847696 total: 352ms remaining: 189ms
## 65: learn: 0.1839835 total: 355ms remaining: 183ms
## 66: learn: 0.1832257 total: 358ms remaining: 176ms
## 67: learn: 0.1825024 total: 361ms remaining: 170ms
## 68: learn: 0.1815570 total: 364ms remaining: 164ms
## 69: learn: 0.1809153 total: 367ms remaining: 157ms
## 70: learn: 0.1799917 total: 370ms remaining: 151ms
## 71: learn: 0.1791766 total: 389ms remaining: 151ms
## 72: learn: 0.1784891 total: 392ms remaining: 145ms
## 73: learn: 0.1778771 total: 395ms remaining: 139ms
## 74: learn: 0.1772184 total: 398ms remaining: 133ms
## 75: learn: 0.1764401 total: 401ms remaining: 127ms
## 76: learn: 0.1760319 total: 404ms remaining: 121ms
## 77: learn: 0.1755020 total: 407ms remaining: 115ms
## 78: learn: 0.1749951 total: 410ms remaining: 109ms
## 79: learn: 0.1742342 total: 413ms remaining: 103ms
## 80: learn: 0.1737224 total: 417ms remaining: 97.7ms
## 81: learn: 0.1730289 total: 420ms remaining: 92.2ms
## 82: learn: 0.1724515 total: 423ms remaining: 86.6ms
## 83: learn: 0.1719595 total: 426ms remaining: 81.1ms
## 84: learn: 0.1715425 total: 429ms remaining: 75.7ms
## 85: learn: 0.1712157 total: 432ms remaining: 70.3ms
## 86: learn: 0.1706916 total: 435ms remaining: 65ms
## 87: learn: 0.1701373 total: 438ms remaining: 59.8ms
## 88: learn: 0.1697693 total: 441ms remaining: 54.5ms
## 89: learn: 0.1692333 total: 445ms remaining: 49.5ms
## 90: learn: 0.1686698 total: 448ms remaining: 44.3ms
## 91: learn: 0.1680853 total: 451ms remaining: 39.3ms
## 92: learn: 0.1676725 total: 455ms remaining: 34.2ms
## 93: learn: 0.1672796 total: 458ms remaining: 29.2ms
## 94: learn: 0.1664915 total: 461ms remaining: 24.2ms
## 95: learn: 0.1661010 total: 464ms remaining: 19.3ms
## 96: learn: 0.1653447 total: 467ms remaining: 14.4ms
## 97: learn: 0.1650469 total: 470ms remaining: 9.59ms
## 98: learn: 0.1645316 total: 473ms remaining: 4.78ms
## 99: learn: 0.1640056 total: 476ms remaining: 0us
## Confusion Matrix and Statistics
##
## Reference
## Prediction Cammeo Osmancik
## Cammeo 303 26
## Osmancik 23 410
##
## Accuracy : 0.9357
## 95% CI : (0.9159, 0.9521)
## No Information Rate : 0.5722
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.8688
##
## Mcnemar's Test P-Value : 0.7751
##
## Sensitivity : 0.9294
## Specificity : 0.9404
## Pos Pred Value : 0.9210
## Neg Pred Value : 0.9469
## Prevalence : 0.4278
## Detection Rate : 0.3976
## Detection Prevalence : 0.4318
## Balanced Accuracy : 0.9349
##
## 'Positive' Class : Cammeo
##
#Stop time
proc.time()-t1
## user system elapsed
## 2.02 0.18 56.50
#Start time
t1 <- proc.time()
rf_function(dataset_num)
## Aggregating results
## Selecting tuning parameters
## Fitting mtry = 2 on full training set
## Confusion Matrix and Statistics
##
## Reference
## Prediction Cammeo Osmancik
## Cammeo 300 29
## Osmancik 26 407
##
## Accuracy : 0.9278
## 95% CI : (0.9071, 0.9452)
## No Information Rate : 0.5722
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.8527
##
## Mcnemar's Test P-Value : 0.7874
##
## Sensitivity : 0.9202
## Specificity : 0.9335
## Pos Pred Value : 0.9119
## Neg Pred Value : 0.9400
## Prevalence : 0.4278
## Detection Rate : 0.3937
## Detection Prevalence : 0.4318
## Balanced Accuracy : 0.9269
##
## 'Positive' Class : Cammeo
##
#Stop time
proc.time()-t1
## user system elapsed
## 2.10 0.05 21.52
##Categorical dataset
#Start time
t1 <- proc.time()
catboost_function(dataset_cat)
## Aggregating results
## Selecting tuning parameters
## Fitting depth = 4, learning_rate = 0.135, iterations = 100, l2_leaf_reg = 1e-06, rsm = 0.9, border_count = 255 on full training set
## 0: learn: 0.2739241 total: 14ms remaining: 1.39s
## 1: learn: 0.1471262 total: 26.4ms remaining: 1.29s
## 2: learn: 0.1005981 total: 34.3ms remaining: 1.11s
## 3: learn: 0.0821546 total: 47.6ms remaining: 1.14s
## 4: learn: 0.0540418 total: 54ms remaining: 1.02s
## 5: learn: 0.0353591 total: 62ms remaining: 972ms
## 6: learn: 0.0192205 total: 68.5ms remaining: 910ms
## 7: learn: 0.0159398 total: 75.6ms remaining: 870ms
## 8: learn: 0.0133189 total: 82.7ms remaining: 836ms
## 9: learn: 0.0117904 total: 89.3ms remaining: 804ms
## 10: learn: 0.0106359 total: 97.3ms remaining: 788ms
## 11: learn: 0.0087630 total: 103ms remaining: 756ms
## 12: learn: 0.0063074 total: 111ms remaining: 743ms
## 13: learn: 0.0053043 total: 117ms remaining: 718ms
## 14: learn: 0.0046528 total: 122ms remaining: 694ms
## 15: learn: 0.0037141 total: 130ms remaining: 685ms
## 16: learn: 0.0031600 total: 136ms remaining: 666ms
## 17: learn: 0.0025516 total: 144ms remaining: 654ms
## 18: learn: 0.0021193 total: 149ms remaining: 635ms
## 19: learn: 0.0017337 total: 155ms remaining: 619ms
## 20: learn: 0.0013476 total: 162ms remaining: 610ms
## 21: learn: 0.0011413 total: 168ms remaining: 595ms
## 22: learn: 0.0010335 total: 174ms remaining: 584ms
## 23: learn: 0.0009143 total: 182ms remaining: 576ms
## 24: learn: 0.0007805 total: 188ms remaining: 564ms
## 25: learn: 0.0006741 total: 196ms remaining: 557ms
## 26: learn: 0.0006166 total: 201ms remaining: 544ms
## 27: learn: 0.0005257 total: 209ms remaining: 536ms
## 28: learn: 0.0004841 total: 214ms remaining: 524ms
## 29: learn: 0.0004323 total: 220ms remaining: 513ms
## 30: learn: 0.0003392 total: 227ms remaining: 505ms
## 31: learn: 0.0003180 total: 233ms remaining: 494ms
## 32: learn: 0.0002726 total: 240ms remaining: 486ms
## 33: learn: 0.0002602 total: 245ms remaining: 476ms
## 34: learn: 0.0002085 total: 251ms remaining: 466ms
## 35: learn: 0.0001800 total: 257ms remaining: 458ms
## 36: learn: 0.0001695 total: 263ms remaining: 449ms
## 37: learn: 0.0001695 total: 269ms remaining: 439ms
## 38: learn: 0.0001695 total: 275ms remaining: 430ms
## 39: learn: 0.0001695 total: 281ms remaining: 421ms
## 40: learn: 0.0001695 total: 286ms remaining: 411ms
## 41: learn: 0.0001695 total: 292ms remaining: 403ms
## 42: learn: 0.0001695 total: 297ms remaining: 394ms
## 43: learn: 0.0001695 total: 303ms remaining: 385ms
## 44: learn: 0.0001695 total: 309ms remaining: 377ms
## 45: learn: 0.0001605 total: 315ms remaining: 370ms
## 46: learn: 0.0001474 total: 320ms remaining: 361ms
## 47: learn: 0.0001474 total: 326ms remaining: 353ms
## 48: learn: 0.0001271 total: 333ms remaining: 346ms
## 49: learn: 0.0001150 total: 338ms remaining: 338ms
## 50: learn: 0.0001057 total: 344ms remaining: 331ms
## 51: learn: 0.0001057 total: 350ms remaining: 323ms
## 52: learn: 0.0000815 total: 355ms remaining: 315ms
## 53: learn: 0.0000815 total: 360ms remaining: 307ms
## 54: learn: 0.0000783 total: 366ms remaining: 299ms
## 55: learn: 0.0000783 total: 371ms remaining: 292ms
## 56: learn: 0.0000783 total: 377ms remaining: 284ms
## 57: learn: 0.0000751 total: 382ms remaining: 277ms
## 58: learn: 0.0000751 total: 387ms remaining: 269ms
## 59: learn: 0.0000674 total: 393ms remaining: 262ms
## 60: learn: 0.0000663 total: 399ms remaining: 255ms
## 61: learn: 0.0000663 total: 405ms remaining: 248ms
## 62: learn: 0.0000630 total: 427ms remaining: 251ms
## 63: learn: 0.0000630 total: 433ms remaining: 243ms
## 64: learn: 0.0000630 total: 440ms remaining: 237ms
## 65: learn: 0.0000597 total: 445ms remaining: 229ms
## 66: learn: 0.0000597 total: 451ms remaining: 222ms
## 67: learn: 0.0000597 total: 458ms remaining: 216ms
## 68: learn: 0.0000550 total: 464ms remaining: 209ms
## 69: learn: 0.0000550 total: 471ms remaining: 202ms
## 70: learn: 0.0000550 total: 477ms remaining: 195ms
## 71: learn: 0.0000550 total: 483ms remaining: 188ms
## 72: learn: 0.0000550 total: 504ms remaining: 187ms
## 73: learn: 0.0000550 total: 510ms remaining: 179ms
## 74: learn: 0.0000550 total: 516ms remaining: 172ms
## 75: learn: 0.0000550 total: 523ms remaining: 165ms
## 76: learn: 0.0000550 total: 528ms remaining: 158ms
## 77: learn: 0.0000550 total: 533ms remaining: 150ms
## 78: learn: 0.0000550 total: 540ms remaining: 144ms
## 79: learn: 0.0000550 total: 546ms remaining: 137ms
## 80: learn: 0.0000550 total: 554ms remaining: 130ms
## 81: learn: 0.0000550 total: 560ms remaining: 123ms
## 82: learn: 0.0000509 total: 566ms remaining: 116ms
## 83: learn: 0.0000509 total: 575ms remaining: 109ms
## 84: learn: 0.0000509 total: 582ms remaining: 103ms
## 85: learn: 0.0000480 total: 590ms remaining: 96ms
## 86: learn: 0.0000471 total: 596ms remaining: 89ms
## 87: learn: 0.0000471 total: 602ms remaining: 82.1ms
## 88: learn: 0.0000471 total: 607ms remaining: 75ms
## 89: learn: 0.0000471 total: 612ms remaining: 68ms
## 90: learn: 0.0000471 total: 620ms remaining: 61.3ms
## 91: learn: 0.0000471 total: 626ms remaining: 54.4ms
## 92: learn: 0.0000471 total: 633ms remaining: 47.6ms
## 93: learn: 0.0000471 total: 639ms remaining: 40.8ms
## 94: learn: 0.0000434 total: 644ms remaining: 33.9ms
## 95: learn: 0.0000434 total: 651ms remaining: 27.1ms
## 96: learn: 0.0000434 total: 656ms remaining: 20.3ms
## 97: learn: 0.0000434 total: 662ms remaining: 13.5ms
## 98: learn: 0.0000434 total: 669ms remaining: 6.76ms
## 99: learn: 0.0000434 total: 675ms remaining: 0us
## Confusion Matrix and Statistics
##
## Reference
## Prediction e p
## e 841 0
## p 0 783
##
## Accuracy : 1
## 95% CI : (0.9977, 1)
## No Information Rate : 0.5179
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 1
##
## Mcnemar's Test P-Value : NA
##
## Sensitivity : 1.0000
## Specificity : 1.0000
## Pos Pred Value : 1.0000
## Neg Pred Value : 1.0000
## Prevalence : 0.5179
## Detection Rate : 0.5179
## Detection Prevalence : 0.5179
## Balanced Accuracy : 1.0000
##
## 'Positive' Class : e
##
#Stop time
proc.time()-t1
## user system elapsed
## 3.44 0.29 89.06
#Start time
t1 <- proc.time()
rf_function(dataset_cat)
## Aggregating results
## Selecting tuning parameters
## Fitting mtry = 46 on full training set
## Confusion Matrix and Statistics
##
## Reference
## Prediction e p
## e 841 0
## p 0 783
##
## Accuracy : 1
## 95% CI : (0.9977, 1)
## No Information Rate : 0.5179
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 1
##
## Mcnemar's Test P-Value : NA
##
## Sensitivity : 1.0000
## Specificity : 1.0000
## Pos Pred Value : 1.0000
## Neg Pred Value : 1.0000
## Prevalence : 0.5179
## Detection Rate : 0.5179
## Detection Prevalence : 0.5179
## Balanced Accuracy : 1.0000
##
## 'Positive' Class : e
##
#Stop time
proc.time()-t1
## user system elapsed
## 16.79 0.15 268.00
##Mix dataset
#Start time
t1 <- proc.time()
catboost_function(dataset_mix)
## Aggregating results
## Selecting tuning parameters
## Fitting depth = 4, learning_rate = 0.135, iterations = 100, l2_leaf_reg = 1e-06, rsm = 0.9, border_count = 255 on full training set
## Warning: Setting row names on a tibble is deprecated.
## 0: learn: 0.6124366 total: 8.55ms remaining: 847ms
## 1: learn: 0.5497581 total: 17.2ms remaining: 841ms
## 2: learn: 0.5001998 total: 19.9ms remaining: 645ms
## 3: learn: 0.4612502 total: 24.5ms remaining: 587ms
## 4: learn: 0.4270973 total: 26.9ms remaining: 511ms
## 5: learn: 0.4010661 total: 29.8ms remaining: 467ms
## 6: learn: 0.3790895 total: 36ms remaining: 478ms
## 7: learn: 0.3600855 total: 40.6ms remaining: 467ms
## 8: learn: 0.3441227 total: 43ms remaining: 435ms
## 9: learn: 0.3300231 total: 46.3ms remaining: 417ms
## 10: learn: 0.3164177 total: 49.6ms remaining: 401ms
## 11: learn: 0.3051466 total: 52.2ms remaining: 383ms
## 12: learn: 0.2963441 total: 54.9ms remaining: 368ms
## 13: learn: 0.2879582 total: 57.2ms remaining: 351ms
## 14: learn: 0.2814924 total: 59.6ms remaining: 338ms
## 15: learn: 0.2770192 total: 62.8ms remaining: 329ms
## 16: learn: 0.2726809 total: 67.8ms remaining: 331ms
## 17: learn: 0.2677600 total: 70.2ms remaining: 320ms
## 18: learn: 0.2625060 total: 72.7ms remaining: 310ms
## 19: learn: 0.2589642 total: 75.2ms remaining: 301ms
## 20: learn: 0.2553530 total: 78.9ms remaining: 297ms
## 21: learn: 0.2516355 total: 81.2ms remaining: 288ms
## 22: learn: 0.2484904 total: 83.8ms remaining: 281ms
## 23: learn: 0.2458426 total: 86.9ms remaining: 275ms
## 24: learn: 0.2427339 total: 89.6ms remaining: 269ms
## 25: learn: 0.2399795 total: 91.8ms remaining: 261ms
## 26: learn: 0.2381049 total: 95.2ms remaining: 257ms
## 27: learn: 0.2356850 total: 98ms remaining: 252ms
## 28: learn: 0.2337605 total: 101ms remaining: 248ms
## 29: learn: 0.2317468 total: 104ms remaining: 242ms
## 30: learn: 0.2303652 total: 107ms remaining: 237ms
## 31: learn: 0.2291056 total: 112ms remaining: 237ms
## 32: learn: 0.2282545 total: 117ms remaining: 237ms
## 33: learn: 0.2268279 total: 121ms remaining: 234ms
## 34: learn: 0.2260235 total: 124ms remaining: 230ms
## 35: learn: 0.2247115 total: 128ms remaining: 227ms
## 36: learn: 0.2234852 total: 131ms remaining: 222ms
## 37: learn: 0.2223861 total: 133ms remaining: 217ms
## 38: learn: 0.2213697 total: 137ms remaining: 214ms
## 39: learn: 0.2209944 total: 139ms remaining: 208ms
## 40: learn: 0.2197758 total: 142ms remaining: 205ms
## 41: learn: 0.2182849 total: 146ms remaining: 201ms
## 42: learn: 0.2174575 total: 148ms remaining: 197ms
## 43: learn: 0.2167092 total: 151ms remaining: 193ms
## 44: learn: 0.2158777 total: 154ms remaining: 188ms
## 45: learn: 0.2151080 total: 157ms remaining: 184ms
## 46: learn: 0.2143868 total: 161ms remaining: 181ms
## 47: learn: 0.2135538 total: 163ms remaining: 177ms
## 48: learn: 0.2129472 total: 166ms remaining: 172ms
## 49: learn: 0.2125243 total: 168ms remaining: 168ms
## 50: learn: 0.2115262 total: 170ms remaining: 164ms
## 51: learn: 0.2108375 total: 173ms remaining: 159ms
## 52: learn: 0.2094871 total: 177ms remaining: 157ms
## 53: learn: 0.2085015 total: 180ms remaining: 153ms
## 54: learn: 0.2075360 total: 183ms remaining: 150ms
## 55: learn: 0.2068616 total: 186ms remaining: 146ms
## 56: learn: 0.2057092 total: 189ms remaining: 142ms
## 57: learn: 0.2051327 total: 192ms remaining: 139ms
## 58: learn: 0.2049704 total: 196ms remaining: 136ms
## 59: learn: 0.2037741 total: 199ms remaining: 133ms
## 60: learn: 0.2031868 total: 201ms remaining: 129ms
## 61: learn: 0.2029190 total: 203ms remaining: 125ms
## 62: learn: 0.2024161 total: 208ms remaining: 122ms
## 63: learn: 0.2022875 total: 210ms remaining: 118ms
## 64: learn: 0.2016485 total: 212ms remaining: 114ms
## 65: learn: 0.2012732 total: 214ms remaining: 110ms
## 66: learn: 0.1995096 total: 217ms remaining: 107ms
## 67: learn: 0.1992574 total: 219ms remaining: 103ms
## 68: learn: 0.1979950 total: 223ms remaining: 100ms
## 69: learn: 0.1972770 total: 227ms remaining: 97.3ms
## 70: learn: 0.1963131 total: 232ms remaining: 94.7ms
## 71: learn: 0.1953201 total: 236ms remaining: 91.6ms
## 72: learn: 0.1943661 total: 241ms remaining: 89.2ms
## 73: learn: 0.1938614 total: 246ms remaining: 86.5ms
## 74: learn: 0.1932402 total: 251ms remaining: 83.5ms
## 75: learn: 0.1931342 total: 253ms remaining: 80ms
## 76: learn: 0.1924828 total: 257ms remaining: 76.8ms
## 77: learn: 0.1920000 total: 259ms remaining: 73.1ms
## 78: learn: 0.1912209 total: 262ms remaining: 69.6ms
## 79: learn: 0.1907802 total: 264ms remaining: 66ms
## 80: learn: 0.1904008 total: 266ms remaining: 62.4ms
## 81: learn: 0.1896263 total: 268ms remaining: 58.9ms
## 82: learn: 0.1889419 total: 273ms remaining: 55.9ms
## 83: learn: 0.1886411 total: 278ms remaining: 53ms
## 84: learn: 0.1879600 total: 281ms remaining: 49.5ms
## 85: learn: 0.1874500 total: 283ms remaining: 46ms
## 86: learn: 0.1866907 total: 286ms remaining: 42.8ms
## 87: learn: 0.1865893 total: 291ms remaining: 39.7ms
## 88: learn: 0.1859817 total: 295ms remaining: 36.4ms
## 89: learn: 0.1854022 total: 297ms remaining: 33ms
## 90: learn: 0.1850236 total: 299ms remaining: 29.6ms
## 91: learn: 0.1847806 total: 303ms remaining: 26.3ms
## 92: learn: 0.1844543 total: 305ms remaining: 23ms
## 93: learn: 0.1838846 total: 308ms remaining: 19.7ms
## 94: learn: 0.1835589 total: 311ms remaining: 16.4ms
## 95: learn: 0.1828398 total: 313ms remaining: 13ms
## 96: learn: 0.1824852 total: 315ms remaining: 9.74ms
## 97: learn: 0.1820398 total: 318ms remaining: 6.5ms
## 98: learn: 0.1817094 total: 322ms remaining: 3.26ms
## 99: learn: 0.1809423 total: 326ms remaining: 0us
## Confusion Matrix and Statistics
##
## Reference
## Prediction no yes
## no 777 73
## yes 23 31
##
## Accuracy : 0.8938
## 95% CI : (0.8719, 0.9131)
## No Information Rate : 0.885
## P-Value [Acc > NIR] : 0.2187
##
## Kappa : 0.3405
##
## Mcnemar's Test P-Value : 5.702e-07
##
## Sensitivity : 0.9712
## Specificity : 0.2981
## Pos Pred Value : 0.9141
## Neg Pred Value : 0.5741
## Prevalence : 0.8850
## Detection Rate : 0.8595
## Detection Prevalence : 0.9403
## Balanced Accuracy : 0.6347
##
## 'Positive' Class : no
##
#Stop time
proc.time()-t1
## user system elapsed
## 2.14 0.20 55.35
#Start time
t1 <- proc.time()
rf_function(dataset_mix)
## Aggregating results
## Selecting tuning parameters
## Fitting mtry = 42 on full training set
## Confusion Matrix and Statistics
##
## Reference
## Prediction no yes
## no 763 61
## yes 37 43
##
## Accuracy : 0.8916
## 95% CI : (0.8695, 0.9111)
## No Information Rate : 0.885
## P-Value [Acc > NIR] : 0.28629
##
## Kappa : 0.4082
##
## Mcnemar's Test P-Value : 0.02016
##
## Sensitivity : 0.9537
## Specificity : 0.4135
## Pos Pred Value : 0.9260
## Neg Pred Value : 0.5375
## Prevalence : 0.8850
## Detection Rate : 0.8440
## Detection Prevalence : 0.9115
## Balanced Accuracy : 0.6836
##
## 'Positive' Class : no
##
#Stop time
proc.time()-t1
## user system elapsed
## 10.01 0.11 131.03
stopCluster(cl)
proc.time()-t
## user system elapsed
## 39.14 1.42 624.94