- The problem
- Categorical data and the poisson distribution
- Generalized linear models: the solution
23/2/2021
Blue.eyes | Brown.eyes | Row.totals | |
---|---|---|---|
Fair hair | 38 | 11 | 49 |
Dark hair | 14 | 51 | 65 |
Column totals | 52 | 62 | 114 |
\[ \text{Probability that } \gamma \text{ events occur in 1 time unit}= \frac{e^{-\lambda}\lambda^{\gamma}}{\gamma!}\]
\[ P(x) = \frac{1}{{\sigma \sqrt {2\pi } }}e^{{{ -{(x - \mu)}^2 } /{2\sigma ^2 }}}\]
Normal | Poisson |
---|---|
Symmetric and continuous error | Assymetric and discrete error |
Variance independent of mean | Variance dependent on the mean |
Variance unknown | Variance known (=mean) |